Chapter 9: Bin There, Done That…

In which we learn to add, subtract, multiply and divide binary data.

Defining Binary Data

Fixed-point data fields, more commonly called “Binary” data fields, are represented in a 2’s complement format that allows integers to be positive or negative. Binary fields are defined using an F or an H as the data type in a DS or DC declarative. Some binary operations require 8-byte doublewords that are defined using D as the data type, but D is technically a floating-point designator. Here are a few examples:

A DC F’20’
B DC H’−30’
C DC F’0’

By default, the F data type creates a fullword (4-byte) field containing a binary integer in 2’s complement format. Each field is automatically aligned on a fullword boundary (an address that is divisible by 4). Fullword values range from -2,147,483,648 to +2,147,483,647 (Think plus or minus 2 gig.)

The H designator is used to create halfword (2-byte) fields containing 2’s complement signed integers that are aligned on a halfword boundaries (addresses that are divisible by 2). Halfword values range from -32,768 to +32,767 (Think plus or minus 32,000.) Here are two examples:

D DS H’32’
E DS H’−7’

In both formats, the length indicator Ln is usually omitted since the length is understood to be 2 or 4, but values from 1 to 8 are possible. When the length indicators are absent, the fields will be automatically aligned on either halfword or fullword boundaries. In order to align a field properly, the assembler may generate from 1 to 7 unused “slack” bytes. Consider the example below. We assume that field “X” is located at address x’1000’ and that the addresses of the bytes are shown inside each byte.

LOCATION

1000 X DS CL1
1004 Y DS F

1000 | 1001 | 1002 | 1003 | 1004 | 1005 | 1006 | 1007

X Slack Bytes Y
It is possible to code a length from 1 to 8 for fullword and halfword binary fields. For example, we might code FL4 or HL2. When a length is indicated, slack bytes will not be generated and the field is not automatically aligned. Consider the following example which is similar to the example above, but generates no slack bytes.

LOCATION

```
1000 X DS CL1
1004 Y DS FL4
```

<table>
<thead>
<tr>
<th>1000</th>
<th>1001</th>
<th>1002</th>
<th>1003</th>
<th>1004</th>
<th>1005</th>
<th>1006</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fullword and halfword alignment can also be obtained with another technique: Coding a 0 duplication factor forces proper alignment for the succeeding field. For instance, the following example forces FIELDA to be fullword aligned.

```
DS 0F
FIELDA DS ...
```

Examples

Some Typical DS's and DC's:

- **A** DS F A FULLWORD FIELD, PROPERLY ALIGNED
- **B** DS H A HALFWORD FIELD, PROPERLY ALIGNED
- **C** DS FL4 A FULLWORD FIELD, NO SLACK BYTES GENERATED
- **D** DS FL4 A HALFWORD FIELD, NO SLACK BYTES GENERATED
- **E** DC F’2147483647’ MAXIMUM VALUE OF A FULLWORD (2^31) -1
- **F** DC H’32767’ MAXIMUM VALUE OF A HALFWORD (2^15) -1
- **G** DC F’-2147483648’ MINIMUM VALUE OF A FULLWORD -(2^31)
- **H** DC H’-32768’ MINIMUM VALUE OF A HALFWORD -(2^15)
- **I** DC F’0’ A FULLWORD ZERO
- **J** DC H’40000’ ASSEMBLY ERROR - CONSTANT TOO LARGE
- **K** DS 0F PROVIDE FULLWORD ALIGNMENT FOR NEXT FIELD
- **L** DS 0H PROVIDE HALFWORD ALIGNMENT FOR NEXT FIELD
- **M** DC H’20 M = X’0014’ 2’S COMPLEMENT INTEGER
- **N** DC F’-20’ N = X’FFFFFFFC’ 2’S COMPLEMENT INTEGER
- **O** DC H’92’ O = X’005C’ 2’S COMPLEMENT INTEGER
Tips

1) Halfword fields are fairly small - between 32767 and -32768. Memory is cheap, think twice before using halfword fields.

2) Remember to code the length indicator in cases where you don’t want slack bytes generated to guarantee alignment.

Changing Data Types

We revisit the diagram below which we first saw in Chapter 6 and which shows the instructions used to convert between four important data types. In this chapter we consider the conversion instructions used between binary and packed decimal data.

![Diagram of data type conversion](image)

Converting from Packed Decimal to Binary

In converting to binary with the **CVB** instruction, there is a requirement that the packed field that is to be converted must be stored in a properly aligned doubleword. Not all packed decimal values can be converted to binary in a register because of the limitations of a 32-bit register. The range of integers which can be successfully converted is -2,147,483,648 to +2,147,483,647. Since the packed fields we work with are rarely 16 bytes long, many programmers will use a work area as a staging area for the conversions. Simply **PACK** or **ZAP** the doubleword with the required field before converting to binary in a register:
ZAP DBLWD,PFIELD TRANSFER FIELD TO DBLWD STAGING AREA
CVB R6,DBLWD CONVERT TO BINARY IN R6

... PFIELD DC P’2345’
DBLWD DS D DOUBLE WORD STAGING AREA

In the example above PFIELD contains a packed decimal value and we wish to convert this value to 2’s complement binary in a register. First, we move the field to a double word staging area called DBLWD. Since PFIELD is packed, the field is transferred to DBLWD with a ZAP rather than an MVC. The CVB instruction performs the conversion from packed to binary.

Converting from Binary to Packed Decimal

The requirements for converting from binary to packed decimal using the CVD instruction are similar to those for using CVB. In this case, the field that is to receive the packed decimal field must be a doubleword. Since a doubleword can hold up to 15 packed digits, any value in a register can be converted to packed-decimal. A small problem arises after the conversion if we wish to edit the data into a printable format. Since the doubleword will contain 15 decimal digits, editing the result requires a large edit word that can be a bit cumbersome. A common practice is to ZAP the double word into a smaller packed field that could hold the result before proceeding to edit the data:

CVD R6,DBLWD CHANGE TO DECIMAL
ZAP SMALLPK,DBLWD Resize to a smaller field

... DBLWD DS D
SMALLPK DS PL4

The size of the smaller packed field is somewhat arbitrary. It must be big enough to hold the maximum integer you might process. Know your data!

A Complete Example

The following code demonstrates how a single zoned-decimal field (ZFIELD) can be converted to three other data types.

PACK PKFIELD,ZFIELD NOW WE HAVE A PACKED VERSION
ZAP DBLWD,PKFIELD PREPARE TO CONVERT TO ...
CVB R8,DBLWD ...A BINARY VERSION IN R8
MVC CHOUT,EDWD GET READY TO EDIT...
ED CHOUT,PKFIELD ... A CHARACTER VERSION IN CHOUT
UNPK ZOUT,PKFIELD CONVERT BACK TO ZONED IN ZOUT

... DBLWD DS D
ZFIELD DS ZL5 5 ZONED DIGITS
PKFIELD DS PL3 3 BYTES WILL HOLD ZFIELD’S DATA
EDWD DC X’40202020212060’ 7-BYTE EDIT WORD
Binary Arithmetic

Binary arithmetic occurs in the general-purpose registers with the data in a two’s complement format. Some arithmetic operations occur between registers (RR) as in the Add Register instruction below:

```
AR    R5,R6
```

This operation adds the contents of R6 to the contents of R5, leaving the sum in R5. R6 remains unchanged. Other binary operations occur between a register and a storage location (RX), as in the following Subtract Fullword instruction:

```
S    R5,NOITEMS
    . . .
    NOITEMS DC F’100’
```

This operation subtracts the fullword called NOITEMS from the fullword in R5, leaving the difference in R5. In RX instructions, the first operand is always a register and the second is a storage location denoted by a base register, an index register, and a displacement. Data may flow from operand 2 to operand 1 or vice versa depending on the operation. In the case of a subtract (S), the data flows from operand 2 and changes operand 1.

Because Subtract Fullword is an RX instruction, it might have been coded explicitly like this:

```
S    R5,0(R3,R4)
```

The target is register 5, while the effective address of the source fullword is determined by adding the contents of base register 4, the contents of index register 3, and the 0 displacement. The term “index register” refers to the idea that the effective address is determined by adding a third component – the index - to the base/displacement address. This is similar to using a subscript (or index) with an array in a high-level language. Both base and index registers are simply general-purpose registers. **There is one important convention that you should note:** When 0 is used as a base or index register, that part of the address is ignored. For example, in the instruction below, the source address is simply the contents of register 6 plus an 18-byte displacement.

```
S    R5,18(R0,R6)
```

Unlike SS instructions in which the target is always operand 1 and the source is always operand 2, the source and target for RX instructions depends on the instruction. In the Subtract Fullword instructions above, the target is operand 1 and the source is operand 2, but the situation is reversed for the Store Fullword instruction below:

```
ST   R5,18(R0,R6)
```

The Store instruction copies the fullword in the operand 1 register to the storage location denoted by operand 2.

There are several characteristics of binary arithmetic which make it easier (in some respects) than
packed decimal arithmetic.

1) The field sizes are usually uniform in size - 2, 4, or 8 bytes (mostly 4) and the instructions are tailored to these sizes. For example, the Subtract Fullword instruction above is designed to work on fullwords.

2) We are usually working with pure integers which don’t have implied decimals. When we convert packed decimal fields to binary, the packed-decimal numbers are treated as pure integers, so the conversions are exact.

Trying to convert packed decimal integers with implied decimals to binary representations is not usually a good idea because it involves a loss of precision. The reason for this is that base 10 is not an exact power of base 2. In representing numbers in base 10, the “weight” of each digit is a power of 10: ..., 10^3, 10^2, 10^1, 10^0=1, 10^-1=1/10, 10^-2 = 1/100, ... Similarly, in base 2 the weights are ..., 2^3, 2^2, 2^1, 2^0=1, 2^-1=1/2, 2^-2=1/4, ... If we had infinitely many weights, any number represented in base 10 would have an exact representation in base 2, but on a computer, the number of digits we can devote to any representation is finite, so there is often a loss of precision when converting between these two bases.

3) Binary arithmetic occurs in the general-purpose registers, and if the program abends, we automatically get a listing of the contents of the registers.

There is one characteristic of binary arithmetic which makes it harder than packed arithmetic – two’s complement integers aren’t as easy to decipher as packed decimal integers. A programmer’s calculator will help with this, but you still need a few basic facts and skills to understand how to use the calculator, make life simpler, and avoid some grief.

1) **Two’s complement integers come in fixed sizes** – If you are working with fullwords, the integers are in 32-bit two’s complement, while halfwords are 16-bit two’s complement. Double words contain 64-bit two’s complement integers. In doing arithmetic, you have to determine what size you want to work with. Most often, you will be working with fullwords.

2) **The high-order bit is the sign** – 0 is positive and 1 is negative. We usually represent binary fields with hexadecimal digits. In this case, which hexadecimal digits have a 0 in the high-order bit? Answer: 0, 1, 2, ..., 7. Which hexadecimal digits have a 1 in the high-order bit? Answer: 8, 9, A, B, C, D, E, and F. If we look at a two’s complement integer represented in hex, you might not recognize the number immediately, but you will know if it is positive or negative by examining the high-order hex digit. Here are some examples:

 x’73F9’ positive
 x’FFFFFF’ negative
 x’C8B’ negative
 x’00000F8’ positive
 x’3456789’ positive

3) **Sign extending a two’s complement integer leaves its value unchanged** - The representation size is changing whenever you sign extend, but not the value of the integer. Here are a few examples:

 00111 is the integer 7 in 5-bit two’s complement
000111 is the integer 7 in 6-bit two’s complement
0000111 is the integer 7 in 7-bit two’s complement
11111 is the integer -1 in 5-bit two’s complement
111111 is the integer -1 in 6-bit two’s complement
1111111 is the integer -1 in 7-bit two’s complement
11111111111111111111111111111111 is the integer -1 in 32-bit two’s complement

4) Determining the value of a two’s complement integer — In two’s complement, positive integers are easier to read than negative integers. If the integer has a 0 sign bit (it’s positive) simply treat the integer as a plain binary integer. For example, the two’s complement integer 001101 represents +13. There’s no difference in how positive integers are represented in plain binary than in two’s complement. Negative two’s complement integers are a bit harder to interpret. The easiest approach for evaluating negative integers is to compute the additive complement of the integer and then read that number in plain binary. For example, the additive complement of -3 is 3, and the additive complement of -5 is 5. Usually when we are working with two’s complement integers, the numbers are represented in hexadecimal to keep the representations somewhat readable. For example, x’FA4’ is a kind of shorthand for b’111110100100’, which is -92 in decimal, but that’s hard to see directly. To see that, we first compute the additive complement of x’FA4’ which is easier to read.

To compute a two’s complement, follow this rule:

Change the binary 1’s to 0’s, change the 0’s to 1’s, and then add 1.

Let’s try that for -92.

\[
\begin{align*}
\text{In binary:} & \quad 11110100100 & = -92 \\
\text{Flipping the 1’s and 0’s:} & \quad 000001011011 \\
\text{Adding 1:} & \quad 000001011011 + 1 \\
\text{Two’s complement:} & \quad 000001011100 = +92 \\
\end{align*}
\]

Let’s compute the additive two’s complement of +9 in 6-bits.

\[
\begin{align*}
\text{In binary:} & \quad 001001 & = +9 \\
\text{Flipping the 1’s and 0’s:} & \quad 110110 \\
\text{Adding 1:} & \quad 110110 + 1 \\
\text{Additive Two’s complement:} & \quad 110111 = -9 \\
\end{align*}
\]
5) **There is a limit to what can be computed in any two’s complement representation** - Here is a list of all the 3-bit binary patterns and their interpretations in binary and in two’s complement.

<table>
<thead>
<tr>
<th>Plain Binary</th>
<th>Two’s Complement</th>
</tr>
</thead>
<tbody>
<tr>
<td>000 = 0</td>
<td>000 = 0</td>
</tr>
<tr>
<td>001 = 1</td>
<td>001 = 1</td>
</tr>
<tr>
<td>010 = 2</td>
<td>010 = 2</td>
</tr>
<tr>
<td>011 = 3</td>
<td>011 = 3</td>
</tr>
<tr>
<td>100 = 4</td>
<td>100 = -4</td>
</tr>
<tr>
<td>101 = 5</td>
<td>101 = -3</td>
</tr>
<tr>
<td>110 = 6</td>
<td>110 = -2</td>
</tr>
<tr>
<td>111 = 7</td>
<td>111 = -1</td>
</tr>
</tbody>
</table>

This pattern is worth thinking about, as it similar to two’s complement patterns for other sizes. The binary patterns on the left are in sequence if you think of the numbers as plain binary integers. The second column is the value of the same binary patterns interpreted as two’s complement integers. In the right column, the numbers start at 0 and continue up to the largest positive integer 3. At that point, the next integer is the smallest integer that can be represented in 3-bit 2’s complement, -4, and continues in sequence up to the largest negative integer that can be formed, -1.

Using numbers in this 3-bit representation allows for binary arithmetic:

\[
\begin{align*}
101 &= -3 \\
+ 010 &= +2 \\
\text{Result: } 111 &= -1
\end{align*}
\]

I’ll point out three other facts about numbers expressed in two’s complement:

a. -1 is always represented by all 1’s, no matter what the representation size.

b. The smallest integer in an n-bit representation is represented by a 1 followed by all 0’s and is equal to \(-2^{n-1}\).

c. In any representation, there is one more negative integer than there are positive integers since 0 is represented as all 0’s (in other words, zero has a positive sign).

Computations in every representation are limited by the number of bits. For example, if we try to add 3 + 3 in 3-bit two’s complement, we can’t possibly compute the correct answer because there is no representation for 6 using 3 bits. Nevertheless, an answer is produced.

\[
\begin{align*}
011 &= +3 \\
+ 011 &= +3 \\
110 &= -2 \text{ Overflow!}
\end{align*}
\]

This computation overflowed the representation size and produced an incorrect answer. For any fixed-size representation, overflow, and its companion — underflow, is a possibility. There is a rule concerning the sign bit that the hardware uses to determine if a binary computation is
correct. The computer keeps up with carries into and out of the sign bit. Valid computations occur when there are no carries into or out of the sign bit, and also for computations with carries into and out of the sign bit. All other cases result in incorrect results. In the overflow above, there was a carry into the sign bit, but not out of the sign bit, so the final result is incorrect.

Moving Data Into and Out of the Registers

Copying the contents of a register into memory is referred to as “storing”, and copying data from a storage location in memory into a register is usually called “loading”. There is a plethora of load instructions and many fewer store instructions. The workhorse instructions in this group are Load Fullword (L) and Store Fullword (ST). Consider the following example where we want to add the contents of X and Y, leaving the sum in Z:

```
L      R5,X     PREPARE TO ADD X
L      R6,Y     ...AND Y
AR     R5,R6    COMPUTE X + Y
ST     R5,Z     PUT THE SUM IN Z
... 
X       DC     F'8'
Y       DC     F'12'
Z       DS     F        F CONTAINS X'00000014'
```

The first load initializes R5 with X, the second initializes R6 with Y. We compute the sum by invoking Add Register (AR) in which the source is R6 and the target is R5. Add Register is the Register to Register (RR) version of the RX instruction, Add Fullword. The computation above is completed by using Store Fullword (ST) to copy the sum into Z.

Another fact that makes binary arithmetic easy is that by mastering one instruction, you will learn other related instructions by association. For example, Add Fullword, Add Register, and Add Halfword are all closely related instructions.

Here is an alternative computation that arrives at the same result, but uses one fewer register:

```
L      R5,X     PREPARE TO ADD X
A      R5,Y     ...and Y
ST     R5,Z     PUT THE SUM IN Z
... 
X       DC     F'8'
Y       DC     F'12'
Z       DS     F        F CONTAINS X'00000014'
```

There are two other instructions closely related to L and ST that move data between memory and registers: Load Multiple (LM) and Store Multiple (STM). These will be discussed in more detail when we discuss linkage, but for the moment, as the names imply, these instructions load or store the contents of multiple (consecutive) registers.
The **LM** instruction loads consecutive fullwords X, Y, and Z into consecutive registers R3, R4, and R5. The **STM** instruction stores the results into X, Y, and Z.

Patterns of Binary Arithmetic Instructions

For all addition and subtraction operations, a fullword is added to or subtracted from a register and the result left in a register. In the case of Add Fullword, the fullword is in memory. In the case of Add Register, the fullwords are in registers. In the case of Add Halfword, a halfword in memory is internally sign-extended to obtain a fullword which is then added to a register. The original halfword is unchanged. The same idea applies to Load Halfword, which takes a halfword in memory, sign-extends it to 32 bits, and copies the resulting fullword into a register. A Load Register (**LR**) instruction copies a fullword from one register to another. Load and Test Register (**LTR**) works identically to **LR** but also sets the condition code to indicate how the target register contents compare to zero. In the case of Store Halfword, the rightmost 16 bits (a halfword) of a register are stored in a halfword memory location.

You should now have a sense of how the following instructions are related and can be used.

<table>
<thead>
<tr>
<th>RX</th>
<th>RX</th>
<th>RR</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>AH</td>
<td>AR</td>
</tr>
<tr>
<td>S</td>
<td>SH</td>
<td>SR</td>
</tr>
<tr>
<td>L</td>
<td>LH</td>
<td>LR, LTR</td>
</tr>
<tr>
<td>ST</td>
<td>STH</td>
<td>--</td>
</tr>
</tbody>
</table>

You might guess that similar operations exist for multiplying and dividing, as well as comparing, and you’re right. Here’s what’s available:

<table>
<thead>
<tr>
<th>RX</th>
<th>RX</th>
<th>RR</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>MH</td>
<td>MR</td>
</tr>
<tr>
<td>D</td>
<td>--</td>
<td>DR</td>
</tr>
<tr>
<td>C</td>
<td>CH</td>
<td>CR</td>
</tr>
</tbody>
</table>

Binary Multiplication

As in the case of packed decimal arithmetic, binary arithmetic for multiplying and dividing is slightly more complicated than for adding and subtracting. Let’s consider an example of each. First, let’s multiply fullwords X and Y below, leaving the product in Z. The first thing we have to consider is whether the product will fit in the fullword Z. Let’s assume it will.
After loading R7 with X, why did we multiply with R6 and not R7? The reason is that multiplication and division occur in pairs of Even/Odd consecutive register pairs like R6 and R7, or R10 and R11. The reason we need to use two registers for multiplying is that whenever you multiply two fullwords together, the result could be as large as a doubleword – this would require the product to occupy two registers. The before and after pictures of a multiplication (M) looks like the diagram below.

Before: Even Register: (Uninitialized) Odd Register: (multiplicand)
After: Even Register: (High 32 bits of product) Odd Register (Low 32 bits of product)

So, for the multiplication above, the before and after pictures might look like this with a random value in R6.

Before: Even Register 6: (x’F003ACD6’) Odd Register 7: (x’00000005’)
After: Even Register 6: (x’00000000’) Odd Register 7: (x’00000014’)

Here is a slightly different example using the same code. We are computing the product of X and Y, and putting the result in Z.

L R7,X
M R6,Y
ST R7,Z

... X DC F’-3’
Y DC F’2’
Z DS F

Before: Even Register 6: (x’F003ACD6’) Odd Register 7: (x’FFFFFFFD’)
After: Even Register 6: (x’FFFFFFF’) Odd Register 7: (x’FFFFFFFA’)

After the multiplication, the even/odd register combination contains a 64-bit result. In most cases, the product can be taken from the odd register and the value in the even register (all zeroes or all ones) is ignored. This occurs if the answer fits in a single register – in other words, the values of the result are in the range -2G to +2G - 1.

If the product fits in a single odd register, we can convert it to packed-decimal with one Convert to Decimal (CVD) instruction. Occasionally a multiplication will generate a double precision result that doesn’t fit in a single register, so we need to know how to handle this case. For double precision results, we have to convert both registers to packed-decimal using two CVDs. If the high-order bit in the odd register is a 1, CVD interprets the register contents as being negative. In this case the converted value is off by a factor of 2^{32}. We correct this mistake by adding 1 (2^{32}) to the even register before issuing the CVD on it. We then multiply the even register contents by a factor (2^{32}) to account for the fact that the even register bits represent larger powers of two than the odd register bits. Finally,
we add the two values together arriving at a packed-decimal equivalent. I include that code below for future reference. This example converts a double precision integer in R6 and R7 to packed-decimal in PRODPK.

```
LTR  R7, R7
BNM  CONVERT
A   R6, =F’1’
CONVERT  EQU  *
CVD  R6, PRODPKR
MP  PRODPK, FACTOR
CVD  R7, DBLWD
AP  PRODPKR, DBLWD
...
```

DBLWD DS D
PRODPK DS 0PL16 LARGEST PACKED FIELD (31 DIGITS)
PRODPKL DC XL8’0000000000000000’
PRODPKR DC XL8’0000000000000000’
FACTOR DC P’4294967296’ 2^32

Binary Division

Binary division also requires us to use an even/odd consecutive pair of registers. Unlike multiplication, the pair of registers must both be initialized before issuing the Divide instruction. Together, the register pair initially represents a 64-bit integer that is the dividend.

Let’s examine a representative division.

```
L  R6, X
SRDL R6, 32  SHIFT CONTENTS OF R6 TO R7 WITH SIGN EXTENSION
D  R6, Y
ST  R7, Z  STORE THE QUOTIENT IN Z - IGNORE REMAINDER IN R6
...
X  DC  F’26’
Y  DC  F’8’
Z  DC  F
```

Before: Even Register 6: (x’00000000’) Odd Register 7: (x’00000001A’)
After: Even Register: (x’00000000’) Odd Register 7: (x’000000003’)

First, 26 = x’1A’, is loaded into the even register and then shifted into the odd register by invoking Shift Right Double Algebraic. This is a bit-shifting operation that treats the pair of registers as a single register (bits that are shifted out of R6 land in R7). Since this is an algebraic shift right, the sign bit fills in on the left, preserving the sign of the dividend. In this case we shift 32 bits from R6 into R7, so R7 contains 26 after the shift, and R6 has the appropriate sign throughout. Before dividing, the combined register pair now contains a 64-bit version of 26. After the Divide, the quotient is left in the odd register, and the remainder is left in the even register.
Binary Comparisons

You can set the condition code with Compare (C), Compare Halfword (CH) and Compare Register (CR). In the case of Compare, the contents of the operand 1 register are compared against a fullword in memory. The condition code is set to indicate how the register contents compare to the contents of memory. Here is an example:

```
L   R8,MAXITEMS
C   R8,COUNT
BH  STILLROOM
...  (COUNT EQUALS OR EXCEEDS MAXITEMS HERE)
STILLROOM EQU *
...
MAXITEMS DC F'1000'
COUNT DS F
```

If MAXITEMS and COUNT had been defined as a halfwords, the only differences in the code would be the use of LH instead of L, and CH instead of C.

```
LH  R8,MAXITEMS  FILLS R8 WITH A SIGN-EXTENDED FULLWORD
CH  R8,COUNT    COMPARES A SIGN-EXTENDED FULLWORD
BH  STILLROOM   ...
...  (COUNT EQUALS OR EXCEEDS MAXITEMS HERE)
STILLROOM EQU *
...
MAXITEMS DC H’1000’
COUNT DS H
```

Keep in mind that for a Compare Halfword instruction, the halfword is internally sign-extended before the comparison occurs, so in fact, fullwords are being compared. The contents of COUNT are unchanged by the comparison. Finally, Compare Register (CR) could also have been used;

```
L   R8,MAXITEMS
L   R9,COUNT
CR  R8,R9
BH  STILLROOM
...  (COUNT EQUALS OR EXCEEDS MAXITEMS)
STILLROOM EQU *
...
MAXITEMS DC F’1000’
COUNT DS F
```

This technique has the disadvantage of requiring a second register.
A Basic Instruction Set for Binary Data Processing

The following instructions which form a working set of instructions for binary data processing. These include:

- CVB Convert to Binary
- CVD Convert to Decimal
- A Add Fullword
- AH Add Halfword
- AR Add Register
- S Subtract Fullword
- SH Subtract Halfword
- SR Subtract Register
- M Multiply Fullword
- MH Multiply Halfword
- MR Multiply Register
- D Divide Fullword
- DR Divide Register
- C Compare Fullword
- CH Compare Halfword
- CR Compare Register
- L Load Fullword
- LH Load Halfword
- LA Load Address
- LR Load Register
- LTR Load and Test Register
- ST Store Fullword
- STH Store Halfword
The Convert to Binary instruction (CVB) takes packed decimal data and converts it to 2’s complement integer data. Operand 1 designates a register where the result will be stored.Operand 2 represents a doubleword storage area which contains a valid 8-byte packed decimal integer.

CVB can convert any packed decimal integer in the range -2,147,483,648 to +2,147,483,647. If the doubleword specified in Operand 2 contains an integer outside this range, the 32 rightmost bits of the result are placed in the Operand 1 register and a fixed-point-divide exception is recognized.

In the following example, a packed field of length 4 is converted to binary.

\[
\text{ZAP DOUBWORD,XPACK STAGE THE PACKED FIELD} \\
\text{CVB R5,DOUBWORD CHANGE TO BINARY} \\
\ldots \\
\text{XPACK DC PL4'123' X'0000123C'} \\
\text{DOUBWORD DS D}
\]

To convert XPACK to binary, we must first move it to a doubleword as required by the CVB instruction. At the end of the conversion, R5 contains x’0000007B’ = 123.

The diagram below illustrates the relationship between CVB and other data conversion instructions for some common data types.
Some Unrelated CVB Instructions

DOUBWORD DS D
PKD1 DC PL5’19’
PKD2 DC P’1865’
PKD3 DC P’-1’

ZAP DOUBWORD,PKD1 MOVE PACKED NO. TO STAGING AREA
CVB R8,DOUBWORD R8 = X’00000013’ = 19

ZAP DOUBWORD,PKD2 MOVE PACKED NO. TO STAGING AREA
CVB R8,DOUBWORD R8 = X’000000749’ = 1865

ZAP DOUBWORD,PKD3 MOVE PACKED NO. TO STAGING AREA
CVB R5,DOUBWORD R5 = X’FFFFFFFF’ = -1

ZAP DOUBWORD,=C’123’ DATA IS NOT PACKED
CVB R4,DOUBWORD ABEND - DATA MUST BE PACKED

ZAP DOUBWORD,=P’3,000,000,000’ DATA IS PACKED
CVB R4,DOUBWORD ABEND - FIXED PT. DIVIDE EXCEPTION
Op 2 DATA > 2,147,483,647
The Convert to Decimal instruction (CVD) takes a 2’s complement integer from a register and converts it to packed decimal data in memory. Operand 1 designates a register containing the 2’s complement integer. Operand 2 represents a doubleword storage area in memory where the packed decimal data will be placed.

CVD can convert any 2’s complement integer which is contained in a register. This includes all integers in the range -2,147,483,648 and +2,147,483,647. Since the result is placed in an 8-byte field (doubleword), no overflow can occur since there is ample room in Operand 2.

In the following example, the contents of register 5 are converted to packed decimal and placed in a doubleword. The result can be moved to a smaller field if the programmer is sure it will fit.

```
CVD R5, DOUBWORD
ZAP XPACK, DOUBWORD

CHANGE IT TO PACKED DECIMAL
DATA WILL FIT IN 6 BYTES

XPACK DS PL6
DOUBWORD DS D
```

The integer in register 5 is converted to packed-decimal and placed in a doubleword in memory. Since the doubleword contains at most 10 decimal digits (it was converted from a single register), it can be transferred to XPACK with ZAP.

The diagram below illustrates the relationship between CVD and other data conversion instructions for some common data types.
Some Unrelated CVD Instructions

R7 = X’00000000’ = 0
R8 = X’0000001F’ = 31
R9 = X’FFFFFFF’ = -1
R10 = X’00001000’ = 4096

```
DOUBWORD    DS    D
...       
CVD    R7,DOUBWORD DOUBWORD = X’000000000000000C’
CVD    R8,DOUBWORD DOUBWORD = X’000000000000031C’
CVD    R9,DOUBWORD DOUBWORD = X’000000000000001D’
CVD    R10,DOUBWORD DOUBWORD = X’00000000004096C’
```
The Add instruction performs 2’s complement binary addition. Operand 1 is a register containing a fullword integer. Operand 2 specifies a fullword in memory. The fullword in memory is added to the fullword in the register and the result is stored in the register. The fullword in memory is not changed. Consider the following example,

```
A R9,AFIELD
```

![Diagram showing the operation of the Add instruction]

The contents of the fullword “AFIELD”, x’0000000A’ = 10, are added to register 9 which contains x’00000025’ = 37. The sum is 47 = x’0000002F’ and destroys the previous value in R9. The fullword in memory is unchanged by this operation.

Since A is an RX instruction, an index register may be coded as part of operand 2.
Examples

Some Unrelated Adds

R4 = X’FFFFFFFE’ - 2 IN 2’S COMPLEMENT
R5 = X’00000028’ + 40 IN 2’S COMPLEMENT
R6 = X’00000004’ + 4 IN 2’S COMPLEMENT

DOG DC F’4
CAT DC F’-4’

A R4,=F’20’ R4 = X’00000012’ = 18
A R5,=F’20’ R5 = X’0000003C’ = 60
A R6,=F’20’ R6 = X’00000018’ = 24
A R6,=F’-5’ R6 = X’FFFFFFFF’ = -1
A R6,CAT R6 = X’00000000’ = 0
A R6,DOG R6 = X’00000008’ = 8
A R6,DOG(R6) R6 - X’00000000’ = 0 INDEXING IS ALLOWED
The Add Halfword (AH) instruction performs 2’s complement binary addition. Operand 1 is a register containing a fullword integer. Operand 2 specifies a halfword in memory. The halfword in memory is sign extended (internally) and added to the fullword in the register. In other words, the halfword is converted to an arithmetically equivalent fullword before the addition. The result is stored in the register, while the halfword in memory is not changed. Consider the following example,

\[
\text{AH R9, AFIELD}
\]

<table>
<thead>
<tr>
<th>R9 (Before)</th>
<th>R9 (After)</th>
</tr>
</thead>
<tbody>
<tr>
<td>00 00 03 FA</td>
<td>00 00 04 79</td>
</tr>
</tbody>
</table>

The contents of the halfword “AFIELD”, x’007F’ = 127, are added (as a fullword) to register 9 which contains x’000003FA’ = 1018. The sum is 1145 = x’00000479’ and destroys the previous value in R9. The halfword in memory is unchanged by this operation.

Since AH is an RX instruction, an index register may be coded as part of operand 2.
Some Unrelated Add Halfwords

R4 = X’FFFFFFF6’ -10 IN 2’S COMPLEMENT
R5 = X’00000031’ +49 IN 2’S COMPLEMENT
R6 = X’00000008’ +8 IN 2’S COMPLEMENT

AH R4,=H’20’ R4 = X’0000000A’ = +10
AH R5,=H’20’ R5 = X’00000045’ = +69
AH R6,=H’-9’ R6 = X’FFFFFFFF’ = -1
AH R4,DOG R6 = X’FFFFFFFF’ = -6
AH R6,DOG R6 = X’0000000C’ = +12
AH R4,DOG(R6) R6 = X’00000000’ = 0 INDEXING ALLOWED

Tips

1) A common error is to code an AH when the second operand is not a halfword. For example:

AMOUNT DC F’20’ AMOUNT = X’00000014’
...
AH R5,AMOUNT

The assembler will not complain about your code, but the halfword instruction will only access the first two bytes of the AMOUNT field (x’0000’).

2) Give some thought as to whether to use halfword instructions and data - memory is cheap!
The Add Register (AR) instruction performs 2’s complement binary addition. Operand 1 is a register containing a fullword integer. Operand 2 specifies a register as well. The fullword in Operand 2 is added to the fullword in Operand 1, and the sum replaces the contents of Operand 1. Operand 2 in unchanged by this operation except when Operand 1 and 2 refer to the same register. Consider the following example,

\[
\text{AR } R9, R8
\]

The contents of the fullword in register 8, x’00000479’, are added to the contents of register 9 which contains x’000003FA’. The sum is x’00000873’ and replaces the previous value in R9. The contents of register 8 are unchanged by this operation.

The condition code is set by this instruction to zero (0) if the result is zero, it is set to minus (1) if the result is negative, and to plus (2) if the result is positive.
Examples

Some Unrelated Add Register Instructions

R4 = X’FFFFFFFE’ -2 IN 2’S COMPLEMENT
R5 = X’00000028’ +40 IN 2’S COMPLEMENT
R6 = X’00000004’ +4 IN 2’S COMPLEMENT

AR R4,R5 R4 = X’00000026’ = +38
AR R4,R4 R4 = X’FFFFFFFF’ = -4
AR R5,R6 R5 = X’0000002C’ = +44
AR R6,R5 R6 = X’0000002C’ = +44
The Subtract instruction (S) performs 2’s complement binary subtraction. Operand 1 is a register containing a fullword integer. Operand 2 specifies a fullword in memory. The fullword in memory is subtracted from the fullword in the register and the result remains in the register. The fullword in memory is not changed. Consider the following example,

\[
S \quad R9,AFIELD
\]

<table>
<thead>
<tr>
<th>R9 (Before)</th>
<th>R9 (After)</th>
</tr>
</thead>
<tbody>
<tr>
<td>00 00 00 31</td>
<td>00 00 00 12</td>
</tr>
</tbody>
</table>

Memory

\[
00 00 00 1F 00 00 ...
\]

AFIELD

The contents of the fullword AFIELD, x’0000001F’ = 31, are subtracted from register 9 which contains x’00000031’ = 49. The difference is 18 = x’00000012’ destroying the previous value in R9. The fullword in memory is unchanged by this operation.

Since S is an RX instruction, an index register may be coded as part of operand 2.
Some Unrelated Subtracts

R4 = X'FFFFFFD5' - 43 IN 2'S COMPLEMENT
R5 = X'00000028' + 40 IN 2'S COMPLEMENT
R6 = X'00000004' + 4 IN 2'S COMPLEMENT

DOG DC F'35'
CAT DC F'4'

S R4,F'20' R4 = X'FFFFFFC1' = -63
S R5,F'-20' R5 = X'0000003C' = +60
S R6,F'20' R6 = X'FFFFFFF0' = -16
S R6,F'-5' R6 = X'00000009' = +9
S R6,CAT R6 = X'00000000' = 0
S R5,Dog R5 = X'00000005' = +5
S R6,Dog(R6) R6 = X'00000000' INDEXING IS ALLOWED
The Subtract Halfword (SH) instruction performs 2’s complement binary subtraction. Operand 1 is a register containing a fullword integer. Operand 2 specifies a halfword in memory. The halfword in memory is sign extended (internally) and subtracted from the fullword in the register. The result remains in the register. The halfword in memory is not changed. Consider the following example,

\[
\text{SH} \quad R9, \text{AFIELD}
\]

The contents of the halfword “AFIELD”, x’007F’ = 127, are subtracted (as a fullword) from register 9 which contains x’000003FA’ = 1018. The difference, 891 = x’0000037B’, destroys the previous value in R9. The halfword in memory is unchanged by this operation.

Since SH is an RX instruction, an index register may be coded as part of operand 2.
Some Unrelated Subtract Halfword Instructions

R4 = X’FFFFFFF0’ -16 IN 2’S COMPLEMENT
R5 = X’00000025’ +37 IN 2’S COMPLEMENT
R6 = X’00000004’ +4 IN 2’S COMPLEMENT

DOG DC H’4’,H’9’,H’37’,H’3’ CONSECUTIVE HALFWORDS

SH R4,=H’20’ R4 = X’FFFFFFFD’ = -36
SH R5,=H’20’ R5 = X’00000011’ = 17
SH R6,=H’4’ R6 = X’00000000’ = 0
SH R4,=H’-9’ R4 = X’FFFFFFF9’ = -7
SH R5,DOG R5 = X’00000021’ = 33
SH R5,DOG(R6) R6 = X’00000000’ = 0 INDEXING ALLOWED

Tips

A common error is to code an SH when the second operand is not a halfword. For example:

```assembly
AMOUNT DC F’20’  AMOUNT = X’00000014’
...
SH R5,AMOUNT
```

The assembler will not complain about your code, but the halfword instruction will only access the first two bytes of the AMOUNT field (x’0000’).
The Subtract Register (SR) instruction performs 2’s complement binary subtraction. Operand 1 is a register containing a fullword integer. Operand 2 specifies a register as well. The fullword in Operand 2 is subtracted from the fullword in Operand 1, and the difference replaces the contents of Operand 1. Operand 2 in unchanged by this operation except when Operand 1 and 2 refer to the same register. Consider the following example,

SR R9,R8

The contents of the fullword in register 8, x’00000479’, are subtracted from the contents of register 9 which contains x’000003FA’. The difference is x’FFFFF181’ and replaces the previous value in R9. The contents of register 8 are unchanged by this operation.

The condition code is set by this instruction to zero if the result is zero, minus if the result is negative, and plus if the result is positive.
Some Unrelated Subtract Register Instructions

R4 = X’FFFFFFFE’ -2 IN 2’S COMPLEMENT
R5 = X’00000028’ +40 IN 2’S COMPLEMENT
R6 = X’00000004’ +4 IN 2’S COMPLEMENT

SR R4,R4 R4 = X’00000000’ = 0
SR R5,R4 R5 = X’0000002A’ = +42
SR R5,R6 R5 = X’00000024’ = +36
SR R6,R5 R6 = X’FFFFFFDC’ = -36
The Multiply instruction (M) performs 2’s complement binary multiplication. Operand 1 names an even register of an “even-odd” consecutive register pair. For instance, R2 would be used to name the R2 / R3 even-odd register pair, and R8 would be used to name the R8 / R9 even-odd register pair. Operand 2 is the name of a fullword in memory containing the multiplier. Before the multiplication, the even register can be left uninitialized, while the odd register contains the multiplicand. After the multiplication, the product occupies the even-odd register pair in 2’s complement format.

Before Multiplication

<table>
<thead>
<tr>
<th>Even Register</th>
<th>Odd Register</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uninitialized</td>
<td>Multiplicand</td>
</tr>
</tbody>
</table>

After Multiplication

<table>
<thead>
<tr>
<th>Even Register</th>
<th>Odd Register</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product</td>
<td>Product</td>
</tr>
</tbody>
</table>

If the product is less than $2^{31} - 1 = 2,147,483,647$ then the answer can be found in the odd register. We may then use CVD and ED to print the product. Otherwise, the even-odd pair must be treated as a large (64 bit) 2’s complement integer. Printing such an integer requires special treatment which we covered earlier. First, let’s look at an example multiplication.

```
AWORD     DC   F’47’
TEN       DC   F’10’
...       
L    R9,AWORD   PUT MULTIPLICAND IN ODD REGISTER
M    R8,TEN    MULTIPLY 47 BY 10
```
Before Multiplication

<table>
<thead>
<tr>
<th>R8</th>
<th>R9</th>
<th>AWORD</th>
</tr>
</thead>
<tbody>
<tr>
<td>00000000</td>
<td>0000002F</td>
<td></td>
</tr>
</tbody>
</table>

After Multiplication

<table>
<thead>
<tr>
<th>R8</th>
<th>R9</th>
</tr>
</thead>
<tbody>
<tr>
<td>00000000</td>
<td>00001D6</td>
</tr>
</tbody>
</table>

First the multiplicand, 47, is loaded into the odd register. The even register is left uninitialized. The multiplier, AWORD, contains a 10 and is not affected by the multiplication. After the multiplication, the register pair R8 / R9 contains a 64 bit 2’s complement integer. Since the product is sufficiently small, R9 by itself contains a valid representation of the product.

When the product will not fit in the odd register, we must provide special handling in order to convert the product to a packed representation. If it takes two registers to hold the result, we will call the answer a “double precision” result. Unfortunately, there is no instruction that will convert a 2’s complement double precision integer to a packed decimal format. **CVD** can be used to convert a single register to packed format, so we will investigate again how this instruction can be used on both registers. To simplify the computations, we will assume that the registers contain 4 bits instead of 32. Suppose a multiplication has produced a double precision product of 83 in registers R4 and R5. Then, \(83 = B'01010011' \), and assuming 4 bit registers, \(R4 = B'0101' \) and \(R5 = B'0011' \). If we use **CVD** to convert R4 we would get 5, when in fact, the bits in R4 represent 80 if we look at the 2’s complement integer contained in R4 and R5. We are off by a factor of \(2^4 = 16 \) since \(5 \times 16 = 80 \). If we use **CVD** to convert R5 we would get 3, which is what the bits in the double precision integer represent. The true answer can be recovered by adding \((5 \times 16) + 3 \). This is illustrated in the diagram below.

```
R4
0101
   \xrightarrow{CVD}
   5
   \hline
   5 \times 16 = 80

R5
0011
   \xrightarrow{CVD}
   3
   \hline
   + 3
   \hline
   83
```
This procedure also works for some negative double precision integers. Consider the double precision integer -108. Using 4-bit registers R4 and R5, we see that R4 contains B’1001’ and R5 contains B’0100’. CVD converts R4 to -7 when, in fact, the bits in R4, B’1001’, represent -112 = -7 x 16. R5 = B’0100’ is converted to 4. Adding -112 + 4 we get the correct double precision answer -108. This is illustrated below.

\[\begin{align*}
R4 & \quad \begin{array}{c} \text{CVD} \end{array} \quad \begin{array}{c} \text{1001} \end{array} \quad -7 \quad -7 \times 16 = -112 \\
R5 & \quad \begin{array}{c} \text{CVD} \end{array} \quad \begin{array}{c} \text{0100} \end{array} \quad 4 \quad + 4 \\
\end{align*} \]

A problem with this method occurs when the odd register contains a 1 in the high-order bit. Consider the double precision integer 60 = B’00111100’. Assume R4 contains B’0011’ and R5 contains B’1100’. The conversion is illustrated below.

\[\begin{align*}
R4 & \quad \begin{array}{c} \text{CVD} \end{array} \quad \begin{array}{c} \text{0011} \end{array} \quad 3 \quad 3 \times 16 = 48 \\
R5 & \quad \begin{array}{c} \text{CVD} \end{array} \quad \begin{array}{c} \text{1100} \end{array} \quad -4 \quad -4 + 16 = 12 \\
\end{align*} \]

R4 is converted to 3, multiplied by 16, and correctly converted to 48. On the other hand, R5 is converted to -4 since the high order bit was a 1. R5 should have been converted to 12. We are off by a factor of 16. If we add 16, the conversion to 12 will be correct.

These examples lead us to a conversion algorithm for double precision results:

1) Test the odd register to see if it is negative. If it is, we need to add \(2^{32} = 4,294,967,296\) (we are using 32-bit registers instead of 4-bit registers) to the final result.
An easy way to do this is by adding 1 to the even register - the rightmost bit in the even register represents 2^{32}.

2) Convert the even register to packed decimal and multiply the result by 2^{32}.

3) Add in the result of converting the odd register to packed decimal.

Here is an example in assembler language of the algorithm described above. The example illustrates how a double precision result in R4 and R5 could be converted to packed decimal in a doubleword.

```
LTR R5,R5  DOES R5 LOOK NEGATIVE?
BNM LOOKSPOS  DON'T ADD TO R4 IF POSITIVE
A R4,=F'1'  WE ARE OFF BY 2 TO THE 32 POWER
LOOKSPOS EQU *
CVD R4,RESULTRT  CONVERT AND GET READY..
MP RESULT,TWOTO32  MULTIPLY BY 2 TO THE 32
CVD R5,DOUBWORD  CONVERT ODD REG TO DECIMAL
AP RESULT,DOUBWORD  ADD THE TWO COMPONENTS
...
RESULT DS 0PL16  NEED A LARGE AREA TO HOLD DOUBLE PRECISION
RESULTLF DC X'00000000' NEEDS TO BE 0'S AFTER CONVERTING R4
RESULTR T DS PL6  WORK AREA FOR R4
TWOTO32 DC P'4294967296' 2 TO THE 32ND POWER
DOUBWORD DS D  CONVERSION AREA FOR CVD
```
Some Unrelated Multiply Instructions

L R7,=F’100’ MULTIPLICAND GOES IN THE ODD REGISTER
M R6,=F’10 R6 = X’00000000’ = 0, R7 = X’0000003E8’ = 1000
L R7,=F’3’ MULTIPLICAND GOES IN THE ODD REGISTER
M R6,=F’-2’ R6 = X’FFFFFFFF’, R7 = X’FFFFFFFA’ = -6
L R3,=F’8’ MULTIPLICAND GOES IN THE ODD REGISTER
M R2,=F’1’ R2 = X’00000000’, R3 = X’00000008’
L R3,=F’8’ MULTIPLICAND GOES IN THE ODD REGISTER
M R2,=F’0’ R2 = X’00000000’, R3 = X’00000000’
L R5,=X’FFFFFFFF’ ALL 1’S IN ODD REG
M R4,=F’2’ MULTIPLYING BY 2 SHIFTS ALL BITS 1 BIT LEFT
R4 = X’00000001’, R5 = X’FFFFFFFE’, THIS IS A DOUBLE PRECISION RESULT

Tips

1) Know your data! In most cases, the product of a multiplication will fit in the odd register where it can easily be converted back to packed decimal. If you have any doubts about the size of a generated product, you must convert the double precision result from both the even and odd registers as described above.
The Multiply Halfword (MH) instruction performs 2’s complement binary multiplication. Operand 1 names a single register (even or odd) which will contain the multiplicand. Operand 2 is the name of a halfword in memory containing the multiplier. After the multiplication, the product is left in Operand 1, destroying the multiplicand. It is possible to generate a product that will not fit in a single register, but an overflow will not be indicated. Leftmost bits in the product could be truncated to 32 bits in Operand 1. The programmer must be aware of the limits of the data being processed, and protect against the possibilities of overflows. Select a fullword multiplication (M) if you are unsure if your data will overflow a single register.

As an example, assume you want to multiply a fullword field called COST by a halfword field called NOITEMS. The following code would accomplish this task and leave the product in register 5.

```
L  R5,COST
MH  R5,NOITEMS
```
Some Unrelated Multiply Halfword Instructions

L R6,=F’100’ MULTIPLICAND GOES IN ANY REGISTER
MH R6,=F’10’ R6 = X’000003E8’ = 1000

L R7,=F’3’ MULTIPLICAND GOES IN ANY REGISTER
MH R7,=F’-2’ R7 = X’FFFFFFFA’ = -6

L R3,=F’8’ MULTIPLICAND GOES IN ANY REGISTER
MH R3,=F’2’ R3 = X’00000010’ = 16

L R3,=F’8’ MULTIPLICAND GOES IN ANY REGISTER
MH R3,=F’0’ R3 = X’00000000’ = 0

L R4,=X’7FFFFFFF’ LARGEST POSITIVE NUMBER IN A SINGLE REG.
MH R4,=F’2’ MULTIPLYING BY 2 CAUSES OVERFLOW
R4 = X’FFFFFFFE’ = -2 INCORRECT RESULT

Tips

1) Know your data! To use MH, one of the operands must be small enough to fit in a halfword. This range is -32,768 to +32,767. The product of the multiplication must fit in a single register where the range of integers is -2,147,483,648 to +2,147,483,647. In many cases, the product of a multiplication will fit in a single register. If you have any doubts about the size of a generated product, use M instead of MH.
The Multiply Register (MR) instruction performs 2’s complement binary multiplication.Operand
1 names an even register of an “even-odd” consecutive register pair. For instance, R2 would be used
to name the R2 / R3 even-odd register pair, and R8 would be used to name the R8 / R9 even-odd
register pair. Operand 2 names a register containing the multiplier. Before the multiplication, the
even register can be left uninitialized, while the odd register contains the multiplicand. After the
multiplication, the product occupies the even-odd register pair in 2’s complement format.

Before Multiplication

<table>
<thead>
<tr>
<th>Even Register</th>
<th>Odd Register</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uninitialized</td>
<td>Multiplicand</td>
</tr>
</tbody>
</table>

After Multiplication

<table>
<thead>
<tr>
<th>Even Register</th>
<th>Odd Register</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product</td>
<td>Product</td>
</tr>
</tbody>
</table>

If the product is less than \(2^{31} - 1 = 2,147,483,647\) then the answer can be found in the odd register.
We may then use CVD and ED in order to print the product. Otherwise, the even-odd pair must be
treated as a large (64 bit) 2’s complement integer. Printing such an integer requires special
treatment we will examine later. First, let’s look at an example multiplication.

L R9,=F’47’ PUT MULTIPLICAND IN ODD REGISTER
L R5,=F’10’ PUT MULTIPLIER IN A REGISTER
MR R8,R5 MULTIPLY EVEN/ODD PAIR(8/9) TIMES R5
First the multiplicand, 47, is loaded into the odd register. The even register is left uninitialized and is shown above to contain \(\text{x'000AB356'} \) (this is arbitrary). The integer 10 is loaded into R5 and acts as the multiplier. After the multiplication, the register pair R8 / R9 contains a 64 bit 2’s complement integer representing the product. Since the product is sufficiently small, R9 by itself contains a valid representation of the product.

When the product will not fit in the odd register, we must provide special handling in order to convert the product to a packed representation. If it takes two registers to hold the result, we will call the answer a “double precision” result. Unfortunately, there is no instruction that will convert a 2’s complement double precision integer to a packed decimal format. CVD can be used to convert a single register to packed format, so we will investigate how this instruction can be used on both registers. For the purposes of demonstration, and to simplify the computations, we will assume that the registers contain 4 bits instead of 32. Suppose a multiplication has produced a double precision product of 83 in registers R4 and R5.

Since 83 = B’01010011’, and assuming 4 bit registers to make things simpler, R4 = B’0101’ and R5 = B’0011’. If we use CVD to convert R4 we would get 5, when in fact, the bits in R4 represent 80 if we look at the 2’s complement integer contained in R4 and R5. We are off by a factor of \(2^4 = 16 \) since 5 x 16 = 80. If we use CVD to convert R5 we would get 3, which is what the bits in the double precision integer represent. The true answer can be recovered by adding \((5 \times 16) + 3 \). This is illustrated in the diagram below.

<table>
<thead>
<tr>
<th>Before Multiplication</th>
<th>After Multiplication</th>
</tr>
</thead>
<tbody>
<tr>
<td>R8: 000AB356</td>
<td>R8: 0000000</td>
</tr>
<tr>
<td>R9: 000002F</td>
<td>R9: 000001D6</td>
</tr>
<tr>
<td>R5: 000000A</td>
<td>R5: 0000000A</td>
</tr>
</tbody>
</table>

![Diagram](https://via.placeholder.com/150)
This procedure also works for some negative double precision integers. Consider the double precision integer -108. Using 4-bit registers R4 and R5, we see that R4 contains B'1001' and R5 contains B'0100'. CVD converts R4 to -7 when, in fact, the bits in R4, B'1001', represent -112 = -7 x 16. R5 = B '0100' is converted to 4. Adding -112 + 4 we get the correct double precision answer -108. This is illustrated below.

A problem with this method occurs when the odd register contains a 1 in the high-order bit. Consider the double precision integer 60 = B'00111100'. Assume R4 contains B’0011’ and R5 contains B’1100’. The conversion is illustrated below.

R4 is converted to 3, multiplied by 16, and correctly converted to 48. On the other hand, R5 is converted to -4 since the high order bit was a 1. R5 should have been converted to 12. We are off by a factor or 16. If we add 16, the conversion to 12 will be correct.

These examples lead us to a conversion algorithm for double precision results:
1) Test the odd register to see if it is negative. If it is, we need to add $2^{32} = 4,294,967,296$ (we are using 32-bit registers instead of 4-bit registers) to the final result. An easy way to do this is by adding 1 to the even register - the rightmost bit in the even register represents 2^{32}.

2) Convert the even register to packed decimal and multiply the result by 2^{32}.

3) Add in the result of converting the odd register to packed decimal.

Here is an example in assembler language of the algorithm described above. The example illustrates how a double precision result in R4 and R5 could be converted to packed decimal in a doubleword.

```
LTR R5, R5        ; DOES R5 LOOK NEGATIVE?
BNM LOOKPOS      ; DON'T ADD TO R4 IF POSITIVE
    A R4, =F'1'   ; WE ARE OFF BY 2 TO THE 32 POWER
LOOKPOS EQU *    
    CVD R4, RESULTRT ; CONVERT AND GET READY...
    MP RESULT, TWOTO32 ; MULTIPLY BY 2 TO THE 32
    CVD R5, DOUBWORD ; CONVERT ODD REG TO DECIMAL
    AP RESULT, DOUBWORD ; ADD THE TWO COMPONENTS
...
RESULT DS 0PL16   ; NEED A LARGE AREA TO HOLD DOUBLE PRECISION
RESULTLF DC X'00000000' ; NEEDS TO BE 0'S AFTER CONVERTING R4
RESULTRT DS PL6   ; WORK AREA FOR R4
TWOTO32 DC F'4294967296' ; 2 TO THE 32ND POWER
DOUBWORD DS D     ; CONVERSION AREA FOR CVD
```
Some Unrelated Multiply Register Instructions

L R7,=F’100’ MULTIPLICAND GOES IN THE ODD REGISTER
L R9,=F’10’ MULTIPLIER GOES IN R9
MR R6,R9 R6 = X’00000000’ = 0, R7 = X’000003E8’ = 100

L R7,=F’3’ MULTIPLICAND GOES IN THE ODD REGISTER
L R6,=F’-2’ MULTIPLIER CAN OCCUPY THE EVEN REGISTER!
MR R6,R6 OPERAND 1 INDICATES EVEN/ODD PAIR R6/R7
 OPERAND 2 REFERENCES THE MULTIPLIER − R6
 AFTERWARD: R7 = X’FFFFFFFFFA’
 R6 = X’FFFFFFFF’

L R3,=F’8’ MULTIPLICAND GOES IN THE ODD REGISTER
L R2,=F’1’ MULTIPLIER GOES IN R2
MR R2,R2 R2 = X’00000000’, R3 = X’00000008’

L R3,=F’8’ MULTIPLICAND GOES IN THE ODD REGISTER
L R8,=F’0’ MULTIPLIER GOES IN R8
MR R2,R8 R2 = X’00000000’, R3 = X’00000000’

L R5,=X’FFFFFFFF’ ALL 1’S IN ODD REG = -1
L R9,=F’2’ MULTIPLIER GOES IN R9
MR R4,R9 R4 = X’FFFFFFFF’, R5 = X’FFFFFFFFF’,
 THIS IS A DOUBLE PRECISION RESULT = -2

Tips

1) **Know your data!** In most cases, the product of a multiplication will fit in the odd register where it can easily be converted back to packed decimal. If you have any doubts about the size of a generated product, you must convert the double precision result from both the even and odd registers as described above.

2) **Rather than leave the even register uninitialized, you can use it to hold the multiplier.** If you do this, the multiplier will be destroyed since the product occupies the even/odd register pair.
The Divide instruction (D) performs 2’s complement binary integer division and returns a quotient and a remainder. Operand 1 names an even register of an “even-odd” consecutive register pair. For instance, R2 would be used to name the R2 / R3 even-odd register pair, and R8 would be used to name the R8 / R9 even-odd register pair. Operand 2 is the name of a fullword in memory containing the divisor. Before the division, the even-odd register pair must be initialized with the dividend, which is effectively a 64-bit 2’s complement integer. After the division, the remainder is contained in the even register and the quotient is contained in the odd register. The sign of the quotient is determined by the rules of algebra. The sign of the remainder will be the same as the dividend.

Before Division

<table>
<thead>
<tr>
<th>Even Register</th>
<th>Odd Register</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dividend (left)</td>
<td>Dividend (right)</td>
</tr>
</tbody>
</table>

After Division

<table>
<thead>
<tr>
<th>Even Register</th>
<th>Odd Register</th>
</tr>
</thead>
<tbody>
<tr>
<td>Remainder</td>
<td>Quotient</td>
</tr>
</tbody>
</table>

In preparing to divide a fullword, a common practice is to load the fullword in the even register and algebraically shift it to the odd register. This practice propagates the appropriate sign bit throughout the even register and successfully initializes the even/odd register pair. Here is an example where we compute A/B where A and B are fullwords.

```
L R8,A  PUT THE DIVIDEND IN THE EVEN REGISTER
SRDA R8,32  ALGEBRAICALLY SHIFT R8 INTO R9
D R8,B  DIVIDE A BY B
...  
A DC F’19’  DIVIDEND
B DC F’5’  DIVISOR
```
The diagram below illustrates the above division just after R8 has been shifted.

<table>
<thead>
<tr>
<th></th>
<th>R8</th>
<th>R9</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Before Division</td>
<td>00000000</td>
<td>00000013</td>
<td>00000013</td>
</tr>
<tr>
<td>R8</td>
<td>R9</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>After Division</td>
<td>00000004</td>
<td>00000003</td>
<td>00000005</td>
</tr>
</tbody>
</table>

The diagram illustrates that the result of the integer division of 19 by 5 is a remainder of 4 in R8, and a quotient of 3 in R9.
Some Unrelated Divide Instructions

L R6,=F’100’ DIVIDEND INITIALLY GOES IN THE EVEN REGISTER
SRDA R6,32 ... AND IS SHIFTED TO THE ODD REGISTER
D R6,=F’10’ ... BEFORE DIVIDING
 R6 (REMAINDER) = X’00000000’,
 R7 (QUOTIENT) = X’0000000A’

L R6,=F’100’ DIVIDEND INITIALLY GOES IN THE EVEN REGISTER
SRDA R6,32 ... AND IS SHIFTED TO THE ODD REGISTER
D R6,=F’8’ ... BEFORE DIVIDING
 R6 (REMAINDER) = X’00000004’,
 R7 (QUOTIENT) = X’0000000C’

L R6,=F’100’ DIVIDEND INITIALLY GOES IN THE EVEN REGISTER
SRDA R6,32 ... AND IS SHIFTED TO THE ODD REGISTER
D R6,=F’0’ ... BEFORE DIVIDING
 ABEND - DIVISION BY 0 NOT ALLOWED

L R6,=F’-100’ DIVIDEND INITIALLY GOES IN THE EVEN REGISTER
SRDA R6,32 ... AND IS SHIFTED TO THE ODD REGISTER
D R6,=F’-8’ ... BEFORE DIVIDING
 R6 (REMAINDER) = X’FFFFFFFC’ = -4
 R7 (QUOTIENT) = X’0000000C’

Tips

1) Know your data! If the divisor might be zero, you must protect your divisions by testing the divisor beforehand.

CLC DIVISOR,=F’0’ IS THE DIVISOR 0?
BE ZERODIV THIS ASSUMES DIVISOR IS A FULLWORD
 BRANCH IF DIVISOR IS 0
D R8,DIVISOR O.K. TO DIVIDE NOW
...

ZERODIV EQU *
 (CODE TO HANDLE A ZERO DIVISOR)
The Divide Register (DR) instruction performs 2’s complement binary integer division and returns a quotient and a remainder. Operand 1 names an even register of an “even-odd” consecutive register pair. For instance, R2 would be used to name the R2 / R3 even-odd register pair, and R8 would be used to name the R8 / R9 even-odd register pair. Operand 2 names a register that contains the divisor. Before the division, the even-odd register pair must be initialized with the dividend, which is effectively a 64-bit 2’s complement integer. After the division, the remainder is contained in the even register and the quotient is contained in the odd register. The sign of the quotient is determined by the laws of algebra, and the sign of the remainder is the same as the sign of the dividend.

In preparing to divide a fullword, a common practice is to load the fullword in the even register and algebraically shift it to the odd register using SRDA. This practice propagates the appropriate sign bit throughout the even register. (If the dividend is positive, the even register is populated with binary 0’s. If the dividend is negative, the even register is populated with binary 1’s.) Here is an example where we compute A/B where A and B are fullwords.

```
L R8, A       PUT THE DIVIDEND IN THE EVEN REGISTER
SRDA R8, 32   ALGEBRAICALLY SHIFT R8 INTO R9
L R5, B       PUT THE DIVISOR IN A REGISTER
DR R8, R5     DIVIDE A BY B

A DC F’19’    DIVIDEND
B DC F’5’     DIVISOR
```
The diagram below illustrates the above division just after R8 has been shifted.

<table>
<thead>
<tr>
<th></th>
<th>R8</th>
<th>R9</th>
<th>R5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Before Division</td>
<td>00000000</td>
<td>00000013</td>
<td>00000005</td>
</tr>
<tr>
<td>After Division</td>
<td>00000004</td>
<td>00000003</td>
<td>00000005</td>
</tr>
</tbody>
</table>
The diagram illustrates that the results of the integer division of 19 by 5 is a remainder of 4 in R8, and a quotient of 3 in R9.

Some Unrelated Divide Register Instructions

<table>
<thead>
<tr>
<th>Instruction</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>L R6,=F’100’</td>
<td>DIVIDEND INITIALLY GOES IN THE EVEN REGISTER</td>
</tr>
<tr>
<td>SRDA R6,32</td>
<td>... AND IS SHIFTED TO THE ODD REGISTER</td>
</tr>
<tr>
<td>L R9,=F’10’</td>
<td>DIVISOR GOES IN R9</td>
</tr>
<tr>
<td>DR R6,R9</td>
<td>... BEFORE DIVIDING</td>
</tr>
<tr>
<td></td>
<td>R6 (REMAINDER) = X’00000000’,</td>
</tr>
<tr>
<td></td>
<td>R7 (QUOTIENT) = X’0000000A’</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Instruction</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>L R6,=F’100’</td>
<td>DIVIDEND INITIALLY GOES IN THE EVEN REGISTER</td>
</tr>
<tr>
<td>SRDA R6,32</td>
<td>... AND IS SHIFTED TO THE ODD REGISTER</td>
</tr>
<tr>
<td>L R4,=F’8’</td>
<td>DIVISOR GOES IN R4</td>
</tr>
<tr>
<td>DR R6,R4</td>
<td>... BEFORE DIVIDING</td>
</tr>
<tr>
<td></td>
<td>R6 (REMAINDER) = X’00000004’,</td>
</tr>
<tr>
<td></td>
<td>R7 (QUOTIENT) = X’0000000C’</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Instruction</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>L R6,=F’100’</td>
<td>DIVIDEND INITIALLY GOES IN THE EVEN REGISTER</td>
</tr>
<tr>
<td>SRDA R6,32</td>
<td>... AND IS SHIFTED TO THE ODD REGISTER</td>
</tr>
<tr>
<td>SR R5,R5</td>
<td>ZERO OUT R5</td>
</tr>
<tr>
<td>DR R6,R5</td>
<td>... BEFORE DIVIDING ABEND</td>
</tr>
<tr>
<td></td>
<td>- DIVISION BY 0 NOT ALLOWED</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Instruction</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>L R6,=F’-100’</td>
<td>DIVIDEND INITIALLY GOES IN THE EVEN REGISTER</td>
</tr>
<tr>
<td>SRDA R6,32</td>
<td>... AND IS SHIFTED TO THE ODD REGISTER</td>
</tr>
<tr>
<td>L R10,=F’-8’</td>
<td>DIVISOR GOES IN R8</td>
</tr>
<tr>
<td>DR R6,R10</td>
<td>... BEFORE DIVIDING</td>
</tr>
<tr>
<td></td>
<td>R6 (REMAINDER) = X’FFFFFFFC’,</td>
</tr>
<tr>
<td></td>
<td>R7 (QUOTIENT) = X’00000000C’</td>
</tr>
</tbody>
</table>
Tips

1) Know your data! If the divisor might be zero, you must protect your divisions by testing the divisor beforehand.

 LTR R5,R5 ASSUME DIVISOR IS IN R5
 BZ ZERODIV BRANCH IF DIVISOR IS 0
 DR R8,R5 OK TO DIVIDE NOW
 ...
 ZERODIV EQU *
 (CODE TO HANDLE A ZERO DIVISOR)

2) Unlike the **MR** instruction, you must initialize the even register. The even/odd register pair must contain a 64 bit binary integer before you execute the instruction.
The Compare instruction (C) is used to compare a binary fullword in a register, Operand 1, with a fullword in memory, Operand 2. The operands are compared as 32-bit signed binary integers. The instruction sets the condition code to indicate how Operand 1 compares to Operand 2:

<table>
<thead>
<tr>
<th>Condition Code</th>
<th>Meaning</th>
<th>Test With</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Operand 1 = Operand 2</td>
<td>BE, BZ</td>
</tr>
<tr>
<td>1</td>
<td>Operand 1 < Operand 2</td>
<td>BL, BM</td>
</tr>
<tr>
<td>2</td>
<td>Operand 1 > Operand 2</td>
<td>BH, BP</td>
</tr>
</tbody>
</table>

Since C is an RX instruction, an index register may be coded as part of operand 2.
Some Unrelated Compare Instructions

R4 = X’FFFFFFD5’ - 43 IN 2’S COMPLEMENT
R5 = X’00000028’ + 40 IN 2’S COMPLEMENT
R6 = X’00000004’ + 4 IN 2’S COMPLEMENT

DOG
DC F’35’

CAT
DC F’4’

C R4,=F’20’ CONDITION CODE = LOW
C R5,=F’-20’ CONDITION CODE = HIGH
C R6,=F’20’ CONDITION CODE = LOW
C R6,=F’4’ CONDITION CODE = EQUAL
C R5,=F’40’ CONDITION CODE = EQUAL
C R5,DOG CONDITION CODE = HIGH
C R6,DOG(R6) CONDITION CODE = EQUAL
The Compare Halfword instruction (CH) is used to compare a binary fullword in a register, Operand 1, with a binary halfword in memory, Operand 2. The operands are compared as 2’s complement signed binary integers. For purposes of comparison, the halfword is “sign-extended” to a fullword before the comparison occurs. This extension occurs internally and is temporary. The instruction sets the condition code to indicate how Operand 1 compares to Operand 2:

<table>
<thead>
<tr>
<th>Condition Code</th>
<th>Meaning</th>
<th>Test With</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Operand 1 = Operand 2</td>
<td>BE, BZ</td>
</tr>
<tr>
<td>1</td>
<td>Operand 1 < Operand 2</td>
<td>BL, BM</td>
</tr>
<tr>
<td>2</td>
<td>Operand 1 > Operand 2</td>
<td>BH, BP</td>
</tr>
</tbody>
</table>

The contents of the halfword “AFIELD”, x’012C’, is sign-extended, and is compared to the contents of register 9 which contains x’000045FF’. Since the contents of the register (Operand 1) is greater than the value than the extended halfword (Operand 2), the condition code is set to “High”. The condition code in the diagram above is specified using 2 binary digits. After comparison, the condition code is set to a binary 10 which is 2 in decimal - a “High” condition.

Since CH is an RX instruction, an index register may be coded as part of operand 2.
Some Unrelated Compare Halfwords

R4 = X'FFFFFFD5' -43 IN 2'S COMPLEMENT
R5 = X'00000028' +40 IN 2'S COMPLEMENT
R6 = X'00000004' +4 IN 2'S COMPLEMENT

DOG DC H'40'
CAT DC H'-30'
PIG DC H'14'
GOAT DC H'3'

CH R4,-H'20' CONDITION CODE = LOW
CH R4,-H'-50' CONDITION CODE = HIGH
CH R5,-H'20' CONDITION CODE = HIGH
CH R6,-H'4' CONDITION CODE = EQUAL
CH R5,-H'40' CONDITION CODE = EQUAL
CH R5,DOG CONDITION CODE = EQUAL
CH R6,DOG(R6) CONDITION CODE = LOW

DOG(R6) IS EQUIVALENT TO PIG
The Compare Register instruction is used to compare a binary fullword in a register, designated by Operand 1, with another fullword in a register, designated by Operand 2. The operands are compared as 32-bit signed binary integers. The instruction sets the condition code to indicate how Operand 1 compares to Operand 2:

<table>
<thead>
<tr>
<th>Condition Code</th>
<th>Meaning</th>
<th>Test With</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Operand 1 = Operand 2</td>
<td>BE, BZ</td>
</tr>
<tr>
<td>1</td>
<td>Operand 1 < Operand 2</td>
<td>BL, BM</td>
</tr>
<tr>
<td>2</td>
<td>Operand 1 > Operand 2</td>
<td>BH, BP</td>
</tr>
</tbody>
</table>

The following example sets the condition code by comparing registers 9 and 6.

\[
\text{CR R9,R6}
\]

The contents of the fullword in register 9, x’FFFFFFFF’ = -1, is compared to the contents of register 6 which contains x’000001AF’ = 431. Since the contents of the Operand 1 register is less than the contents of the Operand 2 register, the condition code is set to “Low”. The condition code in the diagram above is specified using 2 binary digits. After comparison, the condition code is set to a binary 01 which is 1 in decimal - a “Low” condition.
Some Unrelated Compare Register Instructions

R4 = X’FFFFFFD5’ - 43 IN 2’S COMPLEMENT
R5 = X’00000028’ + 40 IN 2’S COMPLEMENT
R6 = X’00000004’ + 4 IN 2’S COMPLEMENT

<table>
<thead>
<tr>
<th>CR</th>
<th>R4, R5</th>
<th>CONDITION CODE = LOW</th>
</tr>
</thead>
<tbody>
<tr>
<td>CR</td>
<td>R5, R4</td>
<td>CONDITION CODE = HIGH</td>
</tr>
<tr>
<td>CR</td>
<td>R4, R4</td>
<td>CONDITION CODE = EQUAL</td>
</tr>
<tr>
<td>CR</td>
<td>R6, R5</td>
<td>CONDITION CODE = LOW</td>
</tr>
<tr>
<td>CR</td>
<td>R5, R5</td>
<td>CONDITION CODE = EQUAL</td>
</tr>
</tbody>
</table>
L is used to copy the fullword stored in the memory location designated by operand 2 into the register specified by operand 1. Consider the following example,

\[L \text{ R9,AFIELD} \]

<table>
<thead>
<tr>
<th>Memory</th>
<th>R9 (Before)</th>
<th>R9 (After)</th>
</tr>
</thead>
<tbody>
<tr>
<td>00 FF FF FF FF FF 00 00</td>
<td>00 00 00 00</td>
<td>FF FF FF FF</td>
</tr>
</tbody>
</table>

The contents of the fullword “AFIELD” are copied to register 9, destroying the previous values in R9. The fullword is unchanged by this operation.

Since L is an RX instruction, an index register may be coded as part of operand 2.
Some Unrelated Loads

R4 = X'12121212'
R5 = X'00000008'
R6 = X'00000004'

AFIELD DC F'4' AFIELD = X'00000004'
BFIELD DC F'1' BFIELD = X'FFFFFFFFFF'
CFIELD DC F'0' CFIELD = X'00000000'

L R4,AFIELD R4 = X'00000004'
L R4,AFIELD(R6) R4 = X'FFFFFFFFFF'
L R4,AFIELD(R5) R4 = X'00000000'
L R6,AFIELD(R6) R6 = X'FFFFFFFFFF'

CONSIDER THE NEXT TWO CONSECUTIVELY EXECUTED LOADS
L R5,AFIELD R5 = X'00000004'
L R6,AFIELD(R5) R6 = X'FFFFFFFFFF'
The \textbf{LH} instruction has two operands: the first operand is a general purpose register, and the second operand is a halfword in memory. The effect of the instruction is to place a 32-bit signed integer, algebraically equivalent to the 16-bit halfword, into Operand 1. The 32-bit integer can be obtained by extending the sign-bit of the halfword so that it occupies 32 bits. (Extending the sign bit of 2’s complement data does not change its arithmetic value.) Consider the following example.

\begin{verbatim}
LH R9,AFIELD
\end{verbatim}

The halfword “AFIELD” contains a binary 1 in the sign-bit. A sign-extended version of the halfword is copied into register 9, destroying the previous values in the register. The halfword in AFIELD is unchanged by this operation.

Since \textbf{LH} is an RX instruction, an index register may be coded as part of operand 2.
Examples

Some Unrelated Load Halfword Instructions

R4 = X’00000000’
R5 = X’FFFFFFFF’
R6 = X’00000004’

<table>
<thead>
<tr>
<th>AFIELD</th>
<th>DC</th>
<th>H’4’</th>
<th>AFIELD = X’0004’</th>
</tr>
</thead>
<tbody>
<tr>
<td>BFIELD</td>
<td>DC</td>
<td>H’-1’</td>
<td>BFIELD = X’FFFF’</td>
</tr>
<tr>
<td>CFIELD</td>
<td>DC</td>
<td>H’0’</td>
<td>CFIELD = X’0000’</td>
</tr>
</tbody>
</table>

LH R4, AFIELD R4 = X’00000004’
LH R4, BFIELD R4 = X’FFFFFFFF’
LH R4, CFIELD R4 = X’00000000’
LH R4, DFIELD R4 = X’FFFF’

CONSIDER THE NEXT TWO CONSECUTIVELY EXECUTED LOADS
LH R5, AFIELD R5 = X’00000004’
LH R6, AFIELD(R5) R6 = X’FFFFFFFF’
LA is used to initialize the register specified by operand 1 with the address designated by operand 2. Operand 2 may be expressed using explicit notation (see Explicit Addressing) or symbolic notation, or a combination of both. Remember that each byte in memory is numbered and that the number assigned to a byte is its address. The address of a field is the address of the first byte of the field. Consider the following example,

\[\text{LA R9, AFIELD} \]

The address of the fullword “AFIELD”, x’00001000’, is copied to register 9, destroying the previous value in R9. The fullword is unchanged by this operation.

Since LA is an RX instruction, an index register may be coded as part of operand 2 as in the example below. We assume that register 6 is used as an index register and initially contains x’0000002F’. When the assembler processes the expression AFIELD(R6), it uses the symbol AFIELD to determine a base register and a displacement, leaving R6 as the index register. The address which is loaded into register 9 is the “effective address” computed by adding the base register contents, plus the index register contents, plus the displacement:

\[
\text{Effective address} = C(\text{Base register}) + C(\text{Index register}) + \text{displacement}
\]

We assume that the contents of the base register plus the displacement is x’00001000’. Then the effective address is x’00001000’ + x’0000002F’ = x’0000102F’.
The example above uses a mixture of symbolic and explicit addressing. The instruction could also be coded using only explicit addresses:

\[
\text{LA } R9, 30 (R7, R8)
\]

In the example above assume that R7 contains x’00001000’ and that R8 contains x’00000020’. R7 is treated as an index register, R8 is the base register, and 30 is a displacement. The effective address is C(R7)+C(R8)+30=x’00001000’+x’00000020’+x’0000001E’=x’0000103E’. (Remember that a decimal 30 is 1E in hexadecimal.) After the instruction has executed, R9 contains x’0000103E’.
Some Unrelated Load Address Instructions

R4 = X’12121212’
R5 = X’00000008’
R6 = X’00000004’

Assume that AFIELD has address x’00003000’.

```
   AFIELD  DC  F’4’
   AFIELD = X’00000004’
```

```
   LA  R4,AFIELD       R4 = X’00003000’
   LA  R4,AFIELD(R6)   R4 = X’00003004’
   LA  R4,AFIELD(R5)   R4 = X’00003008’
   LA  R4,20(R5,R6)    R4 = X’00000020’ 4 + 8 + 20 = 32 = X’20’
```

Using R0 as an index indicates that no index register is desired:

```
   LA  R4,3(R0,R6)     R4 = X’00000007’ 4 + 3 = 7
```

Consider the next two consecutively executed instructions.

```
   LA  R4,AFIELD       R4 = X’00003000’
   LA  R4,L’AFIELD(R0,R4) R4 = x’00003004’
```

In the example above, the length attribute (L’) is used as a displacement

Tips

1. An old assembler joke:

Novice: What’s the difference between a Load instruction and a Load Address instruction?”

Old Hand: About a week … of debugging.

Seriously, you should pay attention when coding L or LA. Both instructions compute the address of operand 2. In the case of L, the machine retrieves the contents of the fullword in memory at the specified address and places the four bytes in a register. In the case of LA, the address is simply stored in a register.
2. The **LA** instruction is often used to change the location referenced by a DSECT:

```
TEST  DSECT
TESTREC DS 0CL80
X      DS ...

USING TEST, R5
...
LA  R5, TABLE        POINT AT TABLE AREA ...
LA  R5, L’TESTREC(R0, R5)  MOVE THE DSECT
```
The Load Register instruction copies the contents of the register specified by Operand 2, into the register specified by Operand 1. The contents of Operand 2 are unchanged as well as the condition code. Consider the instruction below.

LR R5, R10

The contents of register 10 are copied to register 5, destroying the previous value in register 5. Register 10 is unaffected by the operation. The diagram below illustrates this operation.

Some Unrelated LR’s

R4 = X'FFFFFFFF'
R5 = X'00000028'
R6 = X'00000004'

LR R4, R5 R4 = X'00000028' R5 = X'00000028'
LR R5, R4 R5 = X'FFFFFFFF' R4 = X'FFFFFFFF'
LR R5, R6 R5 = X'00000004' R6 = X'00000004'
LR R6, R5 R6 = X'00000028' R5 = X'00000028'
The Load and Test Register instruction copies the contents of the register specified by Operand 2, into the register specified by Operand 1. The contents of Operand 2 are unchanged by this operation. In this respect LTR is equivalent to the LR instruction. The difference between these instructions is that LTR sets the condition code based on the final contents of the Operand 1 register.

<table>
<thead>
<tr>
<th>Condition Code</th>
<th>Meaning</th>
<th>Test With</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 (Zero)</td>
<td>Operand 1 = 0</td>
<td>BE, BZ</td>
</tr>
<tr>
<td>1 (Negative)</td>
<td>Operand 1 < 0</td>
<td>BL, BM</td>
</tr>
<tr>
<td>2 (Positive)</td>
<td>Operand 1 > 0</td>
<td>BH, BP</td>
</tr>
</tbody>
</table>

Consider the instruction below.

LTR R5, R10

The contents of register 10 are copied to register 5, destroying the previous value in register 5. Register 10 is unaffected by the operation. Since the contents of R5 is positive after completion of the operation, the condition code is set to 2. The diagram below illustrates this operation.
Some Unrelated LTR Instructions

R4 = X'FFFFFFFF'
R5 = X'00000028'
R6 = X'00000004'
R7 = X'00000000'

LTR R4,R5 R4 = X'00000028' R5 = X'00000028' Cond. Code = Positive
LTR R5,R4 R5 = X'FFFFFFFF' R4 = X'FFFFFFFF' Cond. Code = Negative
LTR R5,R6 R5 = X'00000004' R6 = X'00000004' Cond. Code = Positive
LTR R6,R5 R6 = X'00000028' R5 = X'00000028' Cond. Code = Positive
LTR R6,R7 R6 = X'00000000' R7 = X'00000000' Cond. Code = Zero
LTR R4,R4 R4 = X'FFFFFFFF' Cond. Code = Negative

Tips

1) LTR is commonly used to test the contents of a single register in order to determine if the binary number is the register is positive, negative or zero. For example, the following code illustrates how to test the contents of register 5.

```
LTR R5,R5
BM NEGATIVE
BP POSITIVE
ZERO EQU *
NEGATIVE EQU *
POSITIVE EQU *
```
ST is used to copy the fullword stored in the register specified by operand 1 into the fullword memory location specified by operand 2. Consider the following example,

\[
\text{ST } R9, \text{AFIELD}
\]

<table>
<thead>
<tr>
<th>R9</th>
<th>11</th>
<th>22</th>
<th>33</th>
<th>44</th>
</tr>
</thead>
<tbody>
<tr>
<td>Memory (Before)</td>
<td>00</td>
<td>FF</td>
<td>FF</td>
<td>FF</td>
</tr>
<tr>
<td>AFIELD</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Memory (After)

<table>
<thead>
<tr>
<th>00</th>
<th>11</th>
<th>22</th>
<th>33</th>
<th>44</th>
<th>00</th>
<th>00</th>
</tr>
</thead>
<tbody>
<tr>
<td>AFIELD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

In this case, the contents of register 9 are copied to the fullword in memory denoted by AFIELD. This operation destroys the previous contents of AFIELD but leaves R9 unchanged.

Since **ST** is an RX instruction, an index register may be coded as part of operand 2. Notice that in the previous example, no index register was specified. When the index register is omitted, the assembler chooses R0, which does not contribute to the address. The following example illustrates this idea.

ST R9, AFIELD (R5)

The assembler converts AFIELD to a base register and displacement, while R5 is the index register. For instance, the expression AFIELD(R5) might (we can not determine the base register) be equivalent to the explicit address 0(R5,R3) - displacement = 0, index register = R5, base register = R3 (see **Explicit Addressing**). The effective address is computed by adding the base register contents to the index register contents plus the displacement. If the index register contains an “8”, then AFIELD(R5) refers to the fullword that begins at an 8 byte displacement from the beginning byte of AFIELD. The following examples illustrate several explicit addresses that include an index register.
In the first explicit address, 4(R4, R3), the effective address is computed by adding the contents of base register 5, the contents of index register 3, and the displacement (1000 + 4 + 4 = 1008). The second address 0(R5, R3) is computed as 1000 + 8 + 0 = 1008, and the third address, 4(R5, R3) is computed to be 1000 + 8 + 4 = 100C (hexadecimal).

If an index register is not explicitly coded, as in the instruction “ST R9,AFIELD”, the assembler chooses R0 as the index register, which does not contribute to the effective address.
R8 = X'00000004'
R9 = X'00000008'

<table>
<thead>
<tr>
<th>Field</th>
<th>DC</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>AFIELD</td>
<td>F'20'</td>
<td>X'00000016'</td>
</tr>
<tr>
<td>BFIELD</td>
<td>F'-1'</td>
<td>X'FFFFFFFE'</td>
</tr>
<tr>
<td>CFIELD</td>
<td>F'0'</td>
<td>X'00000000'</td>
</tr>
</tbody>
</table>

ST R7,AFIELD
ST R8,AFIELD
ST R8,BFIELD
ST R7,AFIELD(R8) CHANGES BFIELD TO X'00001000'
ST R7,AFIELD(R9) CHANGES CFIELD TO X'00001000'

Tips

1) Operand 2 should denote a fullword in memory. It is possible to store the contents of a register into 4 bytes of memory that are not aligned on a fullword, but the assembler will warn you that operand 2 is not properly aligned. If the field involved cannot be aligned conveniently, consider using **STCM** to copy the contents of a register into memory.
The **STH** instruction has two operands: the first operand is a general purpose register, and the second operand is a halfword storage area in memory. The effect of the instruction is to copy the contents of bits 16-31 of the Operand 1 register (the rightmost two bytes) into the halfword specified by Operand 2. The condition code is unaffected by this instruction. Consider the following example.

```
STH  R9,AFIELD
```

<table>
<thead>
<tr>
<th>R9</th>
<th>Memory (Before)</th>
<th>Memory (After)</th>
</tr>
</thead>
<tbody>
<tr>
<td>55 77 FF FF</td>
<td>... 00 00 12 34 00 ...</td>
<td>... 00 00 FF FF 00 ...</td>
</tr>
</tbody>
</table>

The rightmost two bytes of register 9 are copied to the halfword AFIELD, destroying the previous contents. The register value is unchanged by this operation.

Since **STH** is an RX instruction, an index register may be coded as part of operand 2.

Some Unrelated Store Halfword Instructions

- R4 = X’00000000’
- R5 = X’12345678’
- R6 = X’00000004’
CONSIDER THE NEXT TWO CONSECUTIVELY EXECUTED INSTRUCTIONS

LH R8,AFIELD
R8 = X'00000004'

STH R5,AFIELD(R8)
BFIELD = X'5678'

Tips

1) Consider using **STCM** if you need to store a halfword in memory. It has the advantage of being able to copy the value to memory without taking alignment into consideration.