
 1

Chapter 10: Assembler For Dummies

In which we learn that working with dummies can be the smart thing to do.

We begin this chapter by reviewing two assembler directives.

USING and DROP

The assembler converts many of the symbols we use into base/displacement addresses. Each

address contains a base register and a displacement from a known address in our program. In

building a program, we have control over which registers and base addresses are used at various

points in the program. A USING statement is a directive to the assembler that controls which

registers will be selected and the locations of the base addresses of those registers.

An ordinary USING statement is typically coded by naming a base address (most often a

relocatable expression) in operand 1, followed by one or more registers. If * is used as a base address,

it refers to the current value of the location counter. A base address is associated with each named

register. The base address specified in operand 1 is associated with the first named register. If

multiple registers are coded, the base address in increased by 4k for each subsequent register. Here

are some examples,

USING *,R12 BASE ADDRESS FOR R12 = CURRENT LOCATION

 BASE REGISTER = 12

USING *,R12,R11,R10 BASE ADDRESS FOR R12 = CURRENT LOCATION

 BASE ADDRESS FOR R11 = CURRENT LOCATION+4096

 BASE ADDRESS FOR R10 = CURRENT LOCATION+8192

 BASE REGISTERS = 12,11,10

USING HERE,R12,R11 BASE ADDRESS FOR R12 = ADDRESS OF HERE

 BASE ADDRESS FOR R11 = ADDRESS OF HERE+4096

 BASE REGISTERs = 12,11

It’s a common practice for programmers to use 12 as the first base register and work

backwards in sequence if more base registers are needed. This is not a requirement, but simply a

programming convention. The use of register 0 in a USING statement as a base register is a rare

occurrence and beyond the scope of this discussion.

In processing a USING statement, the assembler records each register and its associated

base address in a table called the USING table. The assembler consults the USING table whenever

it converts a symbolic name to a base/displacement address. Registers are first added to the table by

coding them in a USING statement. The base address associated with a register can be changed in

the table by recoding the same register in a USING with a different base address. Finally, a register

can be removed from the USING table altogether by coding it in a DROP statement. Here are some

typical DROP statements,

DROP R12

DROP R12,R11,R10

As programs grow larger we often need to add more base registers, and as a result, available

registers can become scarce. The DROP statement gives us the ability to tell the assembler to stop

 2

using a specific register for base/displacement addressing. This frees the register for other uses. By

dropping a register, you also prevent the assembler from choosing a register inadvertently for a

base/displacement address in an area of the program where you didn’t intend for it to be selected.

There are two important definitions associated with USING and DROP.

1) A USING domain starts at the USING statement and continues to the end of the

program, or until the point at which all the registers named in the USING have been dropped.

2) A USING range starts at the base address and continues for 4096 bytes (4k) of storage.

Here are several examples:

 USING HERE,R12

 ...

HERE DS 0D

 ...

 END

 USING HERE,R12

 ...

HERE DS 0D

 DROP R12

 ...

 END

 USING *,R12

 ...

 END

DOMAIN 4K RANGE FOR12

R12

DOMAIN 4K RANGE FOR12

R12

DOMAIN

4K RANGE FOR12

12R12

 3

If a USING statement names several registers, consecutive 4k ranges are created for each

register.

 USING *,R12,R11

 ...

 END

Addressability Rules

In order for the assembler to generate base/displacement addresses for symbols (and avoid

addressability errors), the code you write has to conform to two rules concerning domains and

ranges.

1) The definition of each symbol must occur within the range of some USING statement.

(Otherwise, the assembler can’t generate a displacement for the symbol.)

2) The use of a symbol in an instruction must occur with the domain of the corresponding

USING statement. (Otherwise, the assembler can’t select a base register for the symbol.)

Let’s give some further attention to rule 1, and what it means to be within the range of a

USING statement. In the original architecture, instructions used 12-bit displacements which were

interpreted as plain binary values. This provided displacements from 0 to 4095. The symbols that

could be addressed by these instructions had to be defined within a 4k range starting at the base

address and moving forward. These same instructions are still heavily used today.

But modern machines also support some instructions that use 20-bit displacements. Furthermore,

the twenty bits are interpreted as twos-complement integers, which means they can be positive or

negative. The range for these instructions is forward from the base address by up to 524287 bytes or

backward from the base address by 524288 bytes. A 20-bit signed displacement satisfies the inequality

 −524288 ≤displacement ≤ +524287

DOMAIN

4K RANGE FOR R12

4K RANGE FOR R11

Base Address

4096 bytes

Base Address

524288 bytes

524287 bytes

 4

Consider the following example code and the addressability errors the MVCs generate. The

code is an experiment in assembling and is not designed to be executed. In order to get the code to be

executable, we would also have to load the base registers properly at runtime.

 HERE DS 0D

 MVC X,Y

 USING *,R12

 MVC X,Y

 DROP R12

 MVC X,Y

 USING HERE,R10

 MVC X,Y

 MVC X,Z

 X DS CL5

 Y DS CL5

 ...

 ...

 Z DS CL5

• The first MVC generates an addressability error because the use of X and Y are not

in the domain of any USING statement. The assembler can’t select a base register.

• The second MVC assembles properly. The use of X and Y occurs in the domain of

R12, and the definitions of X and Y occur in the corresponding 4k range of 12. The

base/displacement addresses are C018 and C01D. (This is easier to see in the listing

which follows.) C corresponds to register 12, and 018 and 01D are the displacements

to X and Y from the base address of register 12.

• The third MVC generates an addressability error because we dropped R12 and at

this point there are no available base registers in the base register table.

• The fourth MVC assembles properly. The use of X and Y occurs in the domain of R10,

and the definitions of X and Y occur in a 4k range starting at the corresponding base

address, HERE. The base/displacement addresses are A01E and A023. The A

corresponds to register 10, and 01E and 023 are the displacements to X and Y from

base address HERE.

• The fifth MVC generates an addressability error because Z is defined outside all

ranges.

There is an important lesson we can learn here: The executable code we write can look correct if we

aren’t paying attention to the USING statements we have written. It’s possible to write executable

code that is correct but assembles incorrectly because of our USING and DROP directives. The

solution to this problem is to learn to read the object code that appears on the left of each instruction

in our assembly listing. For some subtle problems, this is a necessity.

Domain of 12

Domain of 10

Range of R10

Range of R12

 5

Here is an assembly listing of the previous code. I’ve highlighted the assembled code for the

the two MVCs that assembled properly. The executable code is identical, but the object code uses

different base registers. Can you see why?

000000 2 HERE DS 0D

000000 0000 0000 0000 00000 00000 3 MVC X,Y

** ASMA307E No active USING for operand X

** ASMA307E No active USING for operand Y

** ASMA435I Record 3 in KC02486.KC02486B.JOB09826.D0000101.? on volume:

 R:C 00006 4 USING *,R12

000006 D204 C018 C01D 0001E 00023 5 MVC X,Y

 6 DROP R12

00000C 0000 0000 0000 00000 00000 7 MVC X,Y

** ASMA307E No active USING for operand X

** ASMA307E No active USING for operand Y

** ASMA435I Record 7 in KC02486.KC02486B.JOB09826.D0000101.? on volume:

 R:A 00000 8 USING HERE,R10

000012 D204 A01E A023 0001E 00023 9 MVC X,Y

000018 0000 0000 0000 00000 00000 10 MVC X,Z

** ASMA034E Operand Z beyond active USING range by 945 bytes

** ASMA435I Record 10 in KC02486.KC02486B.JOB09826.D0000101.? on volume:

00001E 11 X DS CL5

000023 12 Y DS CL5

000028 13 DS CL5000

0013B0 14 Z DS CL5

As a practical matter, when you get addressability errors, they often occur in bunches. The

good news is that fixing one addressability error can repair numerous others. Keep in mind that

there are only two causes for all addressability errors. Either the assembler can’t choose a base

register for your problem symbol, or the assembler can’t generate a displacement to your symbol. If

you have addressability errors, start with the first error in your code and try to repair it. You may

find that fixing the first error fixes many others.

How the Assembler Employs the USING Table

If you code this,

 MVC X,Y

the assembler has to convert X and Y to base/displacement addresses. How does this occur? First of

all, IBM’s assembler is a two-pass assembler. This means the assembler reads your source code

twice.

• Pass One - The first time the code is read, the goal is to build a symbol table that contains

each symbol you defined (the names starting in column 1), and the location counter value

associated with each symbol. In other words, the assembler is trying to determine where the

important parts of your program are located. The symbols and their locations are recorded in

the symbol table which is used in pass two.

• Pass Two – After the symbol table is completed in pass one, the assembler knows the relative

location of every symbol in your program. The goal in pass two is to generate code for each

instruction and all the storage areas that need to be initialized. As the assembler reads

through the code, it dynamically builds the USING table (adding or dropping registers) so

that it knows which registers are available at any point for converting symbols to

base/displacement addresses.

 6

When the assembler is processing the MVC instruction above, it can consult the symbol table

built in pass one for the location of X. Let’s assume that X has location x’00624’. For purposes of

discussion, let’s assume the USING table looks like this at the time the assembler is assembling the

instruction.

The assembler searches the table sequentially looking for available registers. Which registers

will work? Register 12 is associated with address x’00200’, so a base/displacement address for X that

uses 12 will need a displacement of x’00624’ – x’00200’ = x’00424’. The base/displacement address for

X would become C424. Register 11 is associated with address x’00500’, so a base/displacement

address for X that uses 11 will need a displacement of x’00624’ – x’00500’ = x’00124’. The

base/displacement address for X would become B124. Register 10 can’t be used to form an address for

X since the base address for 10, x’00700’, occurs after the location of X, x’00624’, and the MVC

instruction requires a 12-bit non-negative displacement.

So, after searching the table, the assembler finds there are two registers that can be used to

create a base/displacement address. When this happens, the assembler chooses the register that

generates the smaller displacement. In this case, the base/displacement address of X would become

B124. In the rare case where two registers generate the same displacement for a symbol’s address,

the assembler will choose the larger-numbered register.

Suppose the location of Y in the symbol table were x’00918’? What base/displacement would

the assembler generate for Y? If you concluded it would be A218, you are well on your way to

understanding DROPs and USINGs. Now that we have reviewed DROP and USING, we have a

better idea of how the assembler handles base/displacement addresses. It’s time to move on to the

main topic of this chapter.

DSECTs – Dummy Sections

A DSECT or Dummy Section provides a programmer with the ability to describe the layout of

a storage area without reserving virtual storage for it. The DSECT layout can then be used to

reference any storage area which is addressable by the program. Think of the DSECT as a template

or pattern, which can be associated with an area of storage. Once the DSECT is “positioned”, the

symbolic names in the DSECT can be used to extract or change data in the underlying storage area.

DSECTs provide the ability to assign symbols to storage areas dynamically – a powerful tool.

Let’s start by creating a DSECT called CUSTOMER that describes three storage fields.

CUSTOMER DSECT
FNAME DS CL10
LNAME DS CL10
BALANCE DS PL5

The CUSTOMER DSECT is created by coding the DSECT directive, which indicates the beginning of

the dummy section. The general format for this directive is listed below.

NAME DSECT COMMENT

Register Base Address

12 x’00200’

11 x’00500’

10 x’00700’

 7

The pattern for the DSECT is created using a series of DS directives to describe a collection of fields

in storage: FNAME, LNAME, and BALANCE. You can also use DC’s inside a DSECT, but remember that

a DSECT acquires addressability dynamically. There is no storage area automatically associated

with the DSECT. As a result, if you code a DC inside a DSECT, no storage is initialized. The

assembler will consider the length of the constant in any calculations, but the constant is not created

in memory. You should also keep in mind that the length associated with the DSECT name is 1

(L’CUSTOMER = 1). If you need the length of all the fields in the DSECT, you have to create a symbol

inside the DSECT that references everything. For example, CUST references the entire DSECT

below.

CUSTOMER DSECT

CUST DS 0CL25

FNAME DS CL10

LNAME DS CL10
BALANCE DS PL5

The end of a DSECT is indicated by the beginning of a CSECT or another DSECT.

DSECT Addressability

After creating a DSECT, we establish addressability for its fields in a two-step process:

1) A register is associated with the DSECT name by coding a USING directive that names

the DSECT and a register,

2) The associated register is loaded with the address of a storage area to be addressed.

In this way, the DSECT can be used to access any available storage we can properly address.

Let’s use this idea to extract the first two customer entries, CUST1 and CUST2, below. Notice the

subfields of these group items do not have symbolic names.

MAIN CSECT
 ...
 USING CUSTOMER,R7 ASSOCIATE R7 WITH CUSTOMER DSECT (STEP 1)

* R7 NOW CONTROLS THE DSECT

 LA R7,CUST1 ASSOCIATE THE DSECT WITH CUST1 (STEP 2)
 MVC NAME1,FNAME FNAME REFERENCES FRED
 MVC NAME2,LNAME LNAME REFERENCES SMITH

 ZAP BALOUT,BALANCE BALANCE REFERENCES 432.98

* GO AFTER CUST2

 LA R7,CUST2 ASSOCIATE THE DSECT WITH CUST2 (STEP 2)
 MVC NAME1,FNAME FNAME REFERENCES SUSAN
 MVC NAME2,LNAME LNAME REFERENCES JONES

 ZAP BALOUT,BALANCE BALANCE REFERENCES 123.45

 DROP R7 END ADDRESSABILITY FOR R7

 ...
* FIRST CUSTOMER

CUST1 DS 0CL35

 DC CL10’FRED’
 DC CL20’SMITH’

 DC PL5’432.98’

* SECOND CUSTOMER

CUST2 DS 0CL35

 DC CL10’SUSAN’

 8

 DC CL20’JONES’

 DC PL5’123.45’

 ...

NAME1 DS CL10

NAME2 DS CL10

BALOUT DS PL5

After defining the dummy section above, we associate it with an available register in a

USING directive. In the example code, the statement USING CUSTOMER,R7 associates register seven

with the CUSTOMER dummy section. Addressability is established when the register is loaded with

the address of a CUST1 using the following line,

LA R7,CUST1

At that point, FNAME contains the value “FRED ”, LNAME contains the value “SMITH

”, and BALANCE contains a packed decimal 432.98. Loading the register has “positioned” the DSECT

on the storage area whose address is contained in the register, and has given us access to the

subfields of CUST1. We repeat the technique by loading R7 with the address of CUST2.

LA R7,CUST2

After the second load address, FNAME contains the value “SUSAN ”, LNAME contains

“JONES ”, and BALANCE contains a packed decimal 123.45.

When we have finished using the fields in the DSECT, we issue a DROP directive that

instructs the assembler to stop using register 7 with the associated DSECT. By coding a DROP for R7,

we insure that register 7 will not be inadvertently chosen as a base register later in a different

context.

Consider the power of the above technique. There were no symbolic names associated with

the subfields of the first or second customers above. By creating a DSECT, we have dynamically

assigned symbols to storage areas and we have accessed those data areas. DSECTs have many uses

in assembly language, including array processing, locate mode I/O, and data structure creation and

manipulation. Most sophisticated assembler programs use DSECTS. Next, let’s consider the use of

DSECTs in array processing as a way of continuing our study.

Loading an Array with Data

In the following example, we load a storage area with data that is read from a file. The first

100 records in the file will be read and stored in a table. We assume the file has at least 100 records.

The FILEIN DCB is not specified, and we will use a DSECT similar to the previous example.

CUSTOMER DSECT
FNAME DS CL10
LNAME DS CL10
BALANCE DS PL5
CRECLEN EQU *-CUSTOMER LENGTH OF CUSTOMER ENTRY

 9

MAIN CSECT
 ...
 USING CUSTOMER,R7 R7 CONTROLS DSECT POSITION
 LA R7,TABLE POSITION DSECT AT TOP OF TABLE

 L R4,NOITEMSF LOAD # OF TABLE ENTRIES INTO R4
LOOP EQU *
 GET FILEIN,RECIN READ A RECORD

 MVC FNAME,FNAMEIN MOVE DATA ...

 MVC LNAME,LNAMEIN ... FROM RECIN ...
 ZAP BALANCE,BALIN ... TO THE TABLE
 LA R7,CRECLEN(R0,R7) BUMP THE DSECT TO NEXT TABLE ITEM
 BCT R4,LOOP BRANCH BACK IF MORE RECS
 ...

NOITEMS EQU 100 TABLE WILL HAVE ROOM FOR 100 ITEMS

NOITEMSF DC A(NOITEMS) NO OF ITEMS AS A FULLWORD

TABLE DS (NOITEMS)CL(CRECLEN) AREA FOR 100 CUSTOMER RECORDS

RECIN DS 0CL80

FNAMEIN DS CL10

LNAMEIN DS CL10

BALIN DS PL5

 DS CL55

The table's address is placed in register 7 by the first LA instruction.

LA R7,TABLE

This has the effect of positioning the DSECT at the beginning of the table area since register

7 is associated with CUSTOMER in the USING statement. A record is read, and the subfields are moved

into the table by two MVCs and a ZAP. The most interesting line of code occurs after we have

processed the first customer entry,

 LA R7,CRECLEN(R0,R7)

Here we are loading an address into register 7. The effective address of Operand 2 is computed by

adding CRECLEN, a pure integer representing the length of a single customer entry, and the contents

of register 7. (R0 indicates that the index register is ignored in the calculation.) This adds 25 to the

contents of register 7 and puts the sum back into register 7, effectively “bumping” the DSECT

forward 25 bytes. We loop back, read another record, and move it to the next area in the table. We

continue in this way until 100 records are loaded. Register 4 is used to control the loop.

To move the DSECT to the next empty table entry, we coded the following line,

LA R7,CRECLEN(R0,R7) BUMP THE DSECT

This type of statement is often used in DSECT processing, so we consider it in some detail. Even

though the statement uses explicit addressing in operand 2 - a technique we usually avoid - the

technique is regarded as an acceptable practice here. The explicit format for operand 2 is D2(X2,B2)

where D2 is the displacement, X2 is an index register, and B2 is a base register. The effect of the

instruction is to compute the second operand address explicitly from the base register (R7), index

register (R0), and displacement (CRECLEN). When 0 is specified as a register, that component of the

address computation is ignored. The “effective” address consists of the contents of register 7 plus the

displacement of 25. Since register 7 contains an address of a table entry, adding 25 to the register

will create the address of the next table entry. The DSECT has been “bumped” down to the next

 10

table entry. Finally, the BCT instruction is used for loop control and ensures that each entry in the

table is filled.

The LA instruction above can also be acceptably coded like this,

LA R7,CRECLEN(,R7)

The comma indicates that the index register should default to 0 and does not participate in

the address calculation. There are two other formats for LA that will work, but should be avoided,

LA R7,CRECLEN(R7)

LA R7,CRECLEN(R7,)

Both of these lines use to 0 by default as a base register. This is considered bad form.

 Where Do DSECTS Live?

The assembler provides great freedom in the placement of DSECTs. If you are just

beginning to experiment with DSECTs, you might start by placing your DSECTs above the main

CSECT like those in the example below:

CUSTA DSECT

A DS CL3

B DS CL4

CUSTB DSECT

C DS CL4

D DS CL10

MAIN CSECT

 ...

 END MAIN

The CUSTA DSECT ends when the CUSTB DSECT begins. The CUSTB DSECT ends when the

MAIN CSECT begins. The MAIN CSECT ends with the END statement.

Another option is to put your DSECTS at the end like this:

MAIN CSECT

 ...
CUSTA DSECT

A DS CL3

B DS CL4

C DS CL10

CUSTB DSECT

D DS CL4

E DS CL10

MAIN CSECT

 ...

 END MAIN

 After coding the two DSECTS, we must restart the main control section before coding END.

 11

Like CSECTs, DSECTs can also be stopped and started again. The assembler will put the

correct pieces together in the right order, so the following example is equivalent to the example

above.

MAIN CSECT

 ...

CUSTA DSECT

A DS CL3

B DS CL4

CUSTB DSECT

D DS CL4

CUSTA DSECT

C DS CL10

CUSTB DSECT

E DS CL10

MAIN CSECT

 ...

 END MAIN

The CUSTA DSECT consists of three fields: A, B, and C. The CUSTB DSECT consists of two fields: D

and E. The idea of mixing CSECTs and DSECTS is a bit advanced for a beginning text, but you

should be aware that it’s possible.

The Magic of DSECTs

How does this DSECT magic work? When the assembler processes a DSECT, it resets the

location counter for the DSECT to 0 to compute displacements to fields inside.

The example below lists a DSECT and the corresponding location counter values.

LOC

 CUSTOMER DSECT
000000 FNAME DS CL10
00000A LNAME DS CL10
000014 BALANCE DS PL5

If we code “USING CUSTOMER,R7”, the assembler will use 7 as the base register along with

the appropriate displacement above when creating base/displacement addresses. For example, the

base/displacement address for BALANCE will be 7014. Everything will work out as long as register 7

contains the appropriate runtime address. When you are using DSECTs, the USING statement's

associated register controls the positioning of the DSECT. This is backward from the way normal

symbols work, where we fix a base address in the register and vary the displacement to get to the

field we are addressing. With DSECTs, the offsets are fixed, and we vary the contents of the base

register. This has an important implication: If a register contains the address of something you

want, you can use a DSECT to provide a symbolic reference to it. Of course, it has to be something in

your region, otherwise you will get a S0C4.

 12

Labeled USING Statements

Typically, with an ordinary USING statement, you associate the name of a DSECT with a

single register. The addressability of symbols in the DSECT are controlled by the address in the

associated register. But it’s often the case that you would like to use a DSECT and the symbols it

defines with two different memory locations at the same time. For example, you might be reading

and writing records that have the same structure. Or you might be processing a linked list where you

need to access two items in the list that have identical structures at the same time. With ordinary

USING statements, the only way to do that is to create two different DSECTs that have similar

structures and associate them with two different registers. This is not an ideal solution.

Labeled USING statements were designed to address this problem by adding a label in front

of the USING that can be used to qualify the DSECT symbols. Here is the format of a simple labeled

USING statement,

label USING base address, base register, …

 To illustrate how labeled USINGs work, let’s reuse the CUSTOMER DSECT,

CUSTOMER DSECT
FNAME DS CL10
LNAME DS CL10
BALANCE DS PL5
CRECLEN EQU *-CUSTOMER LENGTH OF CUSTOMER ENTRY

We again assume the definitions of two customers,

* FIRST CUSTOMER
CUST1 DS 0CL35

 DC CL10’FRED’
 DC CL20’SMITH’

 DC PL5’432.98’

* SECOND CUSTOMER

CUST2 DS 0CL35

 DC CL10’SUSAN’

 DC CL20’JONES’

 DC PL5’123.45’

To access both customers, we place labels on two USING statements referencing the same DSECT

and load each register with the address of a customer.

FIRST USING CUSTOMER,R6

SECOND USING CUSTOMER,R7

 LA R6,CUST1

 LA R7,CUST2

With the registers loaded, we have addressability to both customers. We can disambiguate the

common symbols by qualifying symbols with the appropriate label, and copy the data from the first

customer to the second customer.

 MVC SECOND.FNAME,FIRST.FNAME

 MVC SECOND.LNAME,FIRST.LNAME

 ZAP SECOND.BALANCE,FIRST.BALANCE

 13

Dropping a register that is named in a labeled USING requires special handling. To end the

domain of a labeled USING instruction, you must code a DROP instruction with an operand that

specifies the label of the labeled USING instruction.

 DROP FIRST

 DROP SECOND

Dependent USING Statements

Occasionally, we need to process a data structure that contains a substructure that has its own

DSECT. As a simple illustration, consider reading a collection of baseball records where each record

describes a single game. Here is a typical record,

ATLANTA BRAVES 001002003PITTSBURGH PIRATES 004005006

The statistics for each team consist of hits, runs, and errors, so we build a DSECT to describe those items.

STATS DSECT

RUNS DS CL3

HITS DS CL3

ERRORS DS CL3

STATSLEN EQU *-STATS

We then use that DSECT to build a record structure that describes a game with each team’s name

and statistics.

GAME DSECT

TEAM1 DS CL20

GAMESTA1 DS CL(STATSLEN)

TEAM2 DS CL20

GAMESTA2 DS CL(STATSLEN)

GAMELEN EQU *-GAME

We can then use an ordinary USING statement to establish addressability for the GAME DSECT to an

input record buffer called RECIN,

 USING GAME,R5

 LA R5,RECIN

How do we get addressability to the statistics for the first team? We could use another base

register to establish addressability for the STATS DSECT, but that seems wasteful, since we already

have addressability to every field in the GAME DSECT through register 5. An alternative to using

another register is to code a Dependent USING statement that names STATS as the DSECT, and a

relocatable symbol (to which we already have addressability) as the base. Here is an example,

 USING STATS,GAMESTA1

Addressability for STATS is dependent on addressability to GAMESTA1. Register 5 will be used as the

base register for all the fields in STATS. We have saved a register!

Name Hits Runs Errors Name Hits Runs Errors

 14

How would we address the fields in GAMESTA2? One problem with coding dependent USING

statements involves dropping the domain. The only way to DROP a dependent USING is to drop the

register that it depends on – register 5 in this case. Establishing addressability to GAMESTA2 looks

like this,

 DROP R5

 USING GAME,R5

 USING STATS,GAMESTA2

 This seems like an unsatisfactory solution. The most obvious drawback is that we can’t

access the statistics of both teams at the same time. An unlabeled dependent USING is fine for a

single use of a DSECT when you need to define a structure within a structure, but there is a better

solution when we want to use a DSECT multiple times within a larger structure.

Labeled Dependent USING Statements

By using labeled dependent USINGs, we can use a DSECT multiple times within a larger

structure and minimize register usage at the same time. Here is the final solution for getting

addressability to all the fields. First we establish addressability for the GAME DSECT,

 USING GAME,R5

 LA R5,RECIN

Then we write labeled dependent USINGs for each instance of the STATS substructure,

G1 USING STATS,GAMESTA1

G2 USING STATS,GAMESTA2

Once these are defined, we can assess subfields by using the labels as qualifiers,

G1.HITS, G1.RUNS, G1.ERRORS, G2.HITS,G2.RUNS,G2.ERRORS

It’s easy to end the domains of labeled dependent USINGs – simply DROP the labels like

this,
 DROP G1

 DROP G2

	Chapter 10: Assembler For Dummies
	Loading an Array with Data

